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Introduction

If one is seeking a biochemical understanding of development then the language of dy-
namical systems theory seems a natural one to use.

If we are serious about attempting to understand the hierarchy of developmental deci-
sions in molecular rerms then we do not just need to identify the relevant genes and gene
products but also ro understand their dynamical behaviour. In the past this has proved
to be necessary for understanding such things as the mechanism of nerve conduction or
aggregation in slime moulds. In the future it seems probable that it will be through the
mathematics of dynamical systems theory that embryological and molecular results can
meaningfully be brought together,

—J. M. W. Slack, From Egg to Embryo

No one doubts the contribution of mathematical models to evolution-
ary theory, or the necessity of simulations and statistical modeling to
ecology, or the role of kinetic models in enzymology, and yet the ap-
plication of models to developmental biology seems always under ques-
tion. The anticipations recorded by Jonathon Slack remain unfulfilled.
For one thing, molecular biology has only recently begun to provide
the kinds of facts from which empirically grounded models could be
formulated. On the other hand, the reality of epigenetics is far more
complex than envisioned by most earlier workers, although some, like
Slack (1983) certainly appreciated the scope of the problem. Thus, the
kinds of readily understood dynamical systems models reviewed by
Slack for the most part fail to capture the complexity that lab-bench
biologists confront. Consider a recent expression of the situation:

1980, the year that Christiane Niisslein-Volhard and Eric Wieschaus em-
barked on their Nobel Prize—winning screen for embryonic lethal mu-
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tants in Drosophila, in some ways marked the end of the Age of Beauti-
ful Theories in biology, and the dawn of the Age of Ugly Facts. . . . If Wat-
son and Crick’s double-helical model of the structure of DNA showed
that imagination (with a sprinkling of data) could triumph over Nature,
Niisslein-Volhard and Wieschaus’s saturation mutagenesis showed that
evolution can produce biological mechanisms of such unimaginable
complexity that it would be useless, if not laughable, to try to intuit them
a priori. Nature’s imagination, it showed, usually far outstrips that of the
human brain . . . the baroque and counterintuitive biological mecha-
nisms that evolution has produced so often mock the human imagina-
tion. (Anderson and Walter 1999, 557-558.)

Aside from implying that complex mechanisms are ugly, this pas-
sage highlights the fact that molecular biology has finally inverted the
habit of biological inquiry. Instead of using phenomenology and per-
turbation experiments to deduce some mechanism, and then uncover-
ing facts one by one to support that hypothesis, modern biologists in-
creasingly turn to large-scale exploration (e.g., DNA microarrays,
genome sequencing) to generate a mass of facts whose relevance is
eventually established by phenomenology and from which mechanistic
understanding might hopefully emerge.

How to accomplish that last step of making the mechanistic under-
standing emerge from the sum of the parts? When things get too com-
plicated for human intuition and language, scientists turn to math and
models. Our work on the segment polarity and neurogenic networks,
reviewed below, is a preliminary exploration of how biologists might
use dynamical models to come to grips with their ever-growing maps
of epigenetic interactions. Elsewhere we have described our approach
and the results of our first case studies (von Dassow et al. 2000; Meir
et al. 2002b; von Dassow and Odell 2002; Meir et al. 2002a). To us,
modularity is a working assumption: we are trying to build up some
network that exhibits some lifelike behavior from parts that do not, by
themselves, fully explain that behavior. This is the opposite of starting
with a large-scale map, seeking to break it down into more-readily-
understood bits. The two approaches will surely lead to different, but
complementary, results. Here we address in general terms what we
think are the prospects for our approach. We discuss several intertwined
issues:

Plausibility: The most basic limit, presently, to making sense of the
parts catalog of molecular biology is our own inability to tell in
words whether or not a particular conspiracy of molecules actu-
ally does what we think it might do. When confronted with sys-
tems too complex to argue out in words, we need more rigorous
methods than human language to sort out plausibility. Computer
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models can tell us whether it is plausible that some phenomenon
can be explained by some set of relevant facts.

Hole filling and inference: A converse of the plausibility issue is that
the known facts are usually inadequate. A particular model’s de-
ficiencies often reflect gaps between the facts, as long as the mod-
el’s assumptions cannot be trivially questioned. However, efforts
to use models for inference will forever suffer from the inability
of human imagination, as lamented by Anderson and Walter, to
match the creativity of the evolutionary process.

Evolvability and variational tendencies: Assuming one constructs a
realistic model that exhibits some lifelike behavior, the depen-
dence of the model’s behavior on its parameters constitutes a set
of hypotheses about the evolutionary potential of the modeled
mechanism. This will become an important use of dynamical
models, since it is often difficult to deduce experimentally the var-
iational tendencies of developmental processes.

Functional design: Models allow us to explore whether the particu-
lar topology of an epigenetic process is merely contingent, that is,
nature assembling mechanisms out of the junk heap of the genetic
heritage, or whether in a particular case nature has hit upon a
genuinely good way to solve a design problem. We can ask, How
does a particular network achieve some systems-level property of
functional value, such as robustness against perturbation, or
modularity, and are there common mechanistic themes to such
properties? Recalling once again Anderson and Walter’s lament,
are these mechanisms really so baroque?

Using mathematical or computer models to explore ideas about ge-
netic and developmental mechanisms is hardly novel. Pioneers of sev-
eral major threads include Glass and Kauffman (e.g., Glass and Kauff-
man 1972, 1973; Kauffman 1993), Turing (1952), and Meinhardt and
colleagues (e.g., Gierer and Meinhardt 1972; Meinhardt 1977, 1984),
and Waddington and Kacser (1957). These workers developed very
different conceptual approaches to the problem of how to capture gene
network dynamics in maths. However, until relatively recently most of
these efforts have been abstract and phenomenological, rather than
grounded in empirical facts, because the puzzle pieces have been mostly
missing. Kauffman and his followers and (independently) Thomas and
colleagues avoid the issue of missing pieces, while still confronting com-
plex systems, by using randomly connected or reality-inspired networks
of Boolean or thresholded interactors to explore the generic properties
of complex networks (extensively reviewed by Kauffman 1993; exam-
ples in Thieffry et al. 1998; Thieffry and Romero 1999; Thomas et al.
1995). This approach is often intentionally divorced from the con-
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straints of reality in order to get at what Kauffman calls the “statistical
mechanics” of complex networks. Exploring Boolean models led Kauff-
man to a variety of conclusions, especially about the dependence of the
existence of steady states on the density of connectivity in the model.
Thus, Kauffman’s and Thomas’s schools have shown that analysis of
these models in the ensemble provides insights into the general features
to be expected of complex genetic circuits.

Meanwhile Meinhardt and his followers (among others) developed
a variety of candidate models for hypothetical developmental mecha-
nisms based on reaction-diffusion processes (Gierer and Meinhardt
1972; Meinhardt 1977, 1984). This approach was based on Turing’s
insight that coupled systems of diffusible reactants could, under certain
conditions, elicit regular spatial patterns, and that developing embryos
could employ such processes to differentiate initially homogenous cells
in a tissue (Turing 1952). Indeed, Meinhardt (1984) anticipated many
of the essential features of the segment polarity network before it was
molecularly deduced. Despite widespread (and rather undeserved)
contempt among modern molecular biologists for this approach, the
Turing-style models deserve credit for showing that simple chemical
processes could produce complex spatial patterns. The derision of
working biologists comes from the fact that these models have typi-
cally been products of the modeler’s skill, not derived from facts about
the molecular processes causally involved in the phenomenon which
the model proposes to explain.! In addition, simple reaction-diffusion
models exhibit a variety of biologically unrealistic tendencies; Slack
(1983) provides an excellent overview of the results and criticisms of
reaction-diffusion models.

A third major thread, the use of dynamical systems models, is the di-
rect lineage of our efforts. In his influential book, Slack (1983) justified
the use of dynamical systems theory as the natural language for mod-
eling developmental pattern formation and other epigenetic processes.
He argued that one could readily capture measurable, and general,
properties of biochemical reactions, and furthermore that the phenom-
enology of development parallels that of dynamical systems. Notably,
Slack discussed the intimate connection between the stability of cell
states and the attractors of dynamical systems, he pointed out the par-
allel between progressive determination and the time evolution of a
dynamical system toward a steady state, and he highlighted the initial-
condition dependence of cell fate specification and the choice of attrac-
tors by dynamical systems near the boundaries between basins of at-
traction. Slack atknowledged the inherent difficulty of working with
nonlinear dynamics but recognized that this is a necessary cost of im-
proved realism.

A handful of recent attempts use continuous nonlinear models to
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Fig. 12.1.—The Ingeneue modeling framework. 4, Ingeneue does everything (in ifs current version) in a grid of hex-
agonal cells. The network fopology is stamped outinto every cell in a user-pecified grid. The topology consists of nodes
thot interact according to formulas chosen by the user. Nodes may be intracellular or membrane bound; in the latter
case Ingeneve tracks the concentration on each cell face. The equations govering inferactions omong nodes are bult
from “affectors” that encapsulate formulos for various dynamical processes; in the example illustrated, the node rep-
resenting the intracellular form of the Wg protein, FWG, is translated in proportion to the abundance of wg mRNA (gov-
emed by the TinAff object), it experiences endo- and exocytosis (the affectors ExoEAff and EndolAff govern equil-
bration with the extracellulor form of Wg, E-WG), and it undergoes firstorder decay (the DecayAff object). The actual
formulas, in dimensional form, are shown at the bottom; dashed boxes correspond to the individual affector objects.
At each fime point, Ingeneue invites each node fo compute its own fime derivative simply by adding together ifs stoble
of affectors. This architecture makes it trivial to modify the network topology throughout the entire field; if we wanted
fo add o new interaction for FWG, we simply add the appropriate tags to the input script, ond Ingeneue handles sort-
ing out all the neighbor relations within the cel grid. B, Most regulatory relationships in Ingeneue ore represented by
sigmoid dose-respanse curves. Shown here is o simple equation (in dimensionol form) in which the first ferm endows
transcriptional activation of X by Y, ond the second confers firstorder decay. The virtue of this approach is thot it
enforces several biologically realistic porameters: o sofuration level (i.e., moximum transcriptional activity), o half
maximal level of regulator, and a shape parometer, which is equivalent to the Hill coefficient. Modulating the Hill co-
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explore real, well-understood epigenetic processes. Edgar and Odell
(Edgar et al. 1989) developed one of the earliest realistic, nonlinear
models of developmental pattern formation, showing that a subset
of the Drosophila pair-rule genes can account, through mutual cross-
repression, for how pair-rule gene products sharpen each other’s ex-
pression boundaries. A variety of recent efforts similarly attempt to
capture the behavior of entire (if as yet small) genetic circuits, deduced
empirically, using continuous nonlinear models, the most emblematic
of which is Barkai and Leibler’s (1997) model of the core control cir-
cuit for bacterial chemotaxis. These authors not only used their model
to predict that this mechanism would tolerate variation in the levels of
gene expression, but also showed that the real biological circuit has
this property as well (Alon et al. 1999).

Most such efforts borrow heavily from the well-developed body of
formulations describing enzyme and binding kinetics, which has been
under development for over a century and is deeply integrated with lab
practice (Gutfreund 1995; Wyman and Gill 1990). We follow the same
prescription because many interactions between gene products liter-
ally are binding reactions, enzyme-catalyzed transformation, or other
straightforward chemical processes, so formulas for first- and second-
order chemical reactions and so forth can get us pretty far as long as
we assume that cells are well-stirred reaction vessels, and as long as we
assume that molecular species are abundant enough in cells to use the
continuum approximation. As described elsewhere (von Dassow et al.
2000; Meir et al. 2002a) we use a stereotyped formulation for dose-
response relationships between regulators and targets, largely inspired
by classical treatments of enzymatic processes and allosteric binding
phenomena. Because many of the networks we are interested in me-
diate pattern formation in fields of cells, and because these networks
are expressed by systems of differential equations too complex to be
wielded comfortably by mere humans, we developed a gene network
simulator program (Ingeneue) that weaves the equations together from
a library of formulaic building blocks, guided by a text description of
the network, and instantiates indexed copies of the network in each
cell in a user-specified grid (see fig. 12.1). This program makes it easy
to “rewire” network models, testing consequences within a common

efficient v changes the steepness of the dose-tesponse curve. It s this porameter that we call “cooperativity,” by anok
ogy o classic allosteric systems; with - = 1 we say the response is noncooperative, ond increasing cooperativity
leads to o more and more steplike function. €, Individual nodes often must integrate multiple inputs. For exomple, an
activotor A ond inhibitor | might compete for binding to an enhancer sequence S; this relationship con be captured by
nesting dose-esponse curves o come up with on appropriate behavior, as judged by the graph. For this formula, as
appropriate, the inhibitor can squelch the response to low concentrations of acfivator, but increasing activator con-
centration overwhelms ony particulor level of inhibitor,
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framework, and makes it feasible to compare the results from models
of entirely different circuits.

Lessons from the Segment Polarity Network

Our first task was to synthesize the known facts about the mechanism
of segmentation and ask, simply, Do we know enough about this sys-
tem to make a model that accounts for some aspect of the behavior and
function of the real biological entity, and if not, what do we need to
know better? The segment polarity network is the last tier in a cascade
of ever-finer-scale patterning processes that start with maternally tran-
scribed mRNAs localized to each end of the egg and end with a nearly
cell-row-by-cell-row specification of positional information along the
anterior-posterior axis of the embryo at about the time of cellulariza-
tion (summarized in fig. 12.2, A, and reviewed by Martinez-Arias 1993;
Pankratz and Jackle 1993). The segment polarity network stabilizes and
maintains the boundary between parasegments (the metameric units
that patterning genes map out). The tier immediately above them in
the segmentation cascade, the pair-rule genes, are expressed just long
enough to map out the segments and activate patterned expression of
segment polarity genes like engrailed (en), wingless (wg), sloppy-paired
(slp). Thereafter the segment polarity genes have to “hold on to” the
pattern imprinted by the pair-rule genes. This is accomplished, ac-
cording to the canonical view, because the segment polarity genes me-
diate a codependence between cell states on either side of the paraseg-
ment boundary. Persistence of the wg-expressing cell state in the cells
anterior to the compartment boundary depends on signaling by the
product of the hedgehog (hh) gene under the control of En. In turn, the
persistence of the en-expressing cell state posterior to the boundary de-
pends on Wg signaling (fig. 12.2, B).2

Most of the core segment polarity genes are components of the Hh
and Wg signal transduction pathways. Hh acts through the products

Fig. 12.2.—The segmentation coscade and the core segment polarity netwark. 4, Cortoon-ond-arrows summary of
the segmentation cascade. This fiqure is meant to convey the flavor of the process, not every feature. Matemally ex-
pressed gene products such as bicoid (bed) and nanos (nos) are localized within the oocyte; during early development
localized synthesis leads to long-ange grodient formation; gap genes, including hunchback (hb), giont (gf), knips
(kni) and Krippel (Kr) respond to local Bicoid concentration and /or to each other, forming broad bonds of expression;
they in tum shape the emerging expression patterns of pair+ule genes, induding kairy (h), even-skipped (eve), nt,
paired (prd), and fushi torazu (ftz) into finerscale stripes; and the pairrule genes shape the initial expression of the
segment polarity genes, especially wingless (wg) ond engrailed (en) and sloppy-paired (slp) B, A common texthook
summary of the segment polarity cascade. wg-expressing cells on the anterior side of the boundary depend on en/hf
expressing cells on the posterior side, and vice versa. C, The wiring diogram for the simplest version of our segment
polarity model. The diagrom here was rotionalized and analyzed in von Dassow et ol. (2000); doshed links were
added ofter on initiol model without them failed to exhibit lifelike behavior. CID, Cubitus interruptus; CN, repressor frag-
ment of Cubitus interruptus; PH, Patched-Hedgehog complex; PTC, Patched.
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of the genes patched (ptc) (Hooper and Scott 1989; Marigo et al. 1996;
Stone et al. 1996) and smoothened (smo) (Alcedo et al. 1996; van den
Heuvel and Ingham 1996) and the transcriptional switch encoded by
cubitus interruptus (ci) (Alexandre et al. 1996; Dominguez et al. 1996;
Hepker et al. 1997; Von Ohlen et al. 1997). Ptc is the Hh-binding com-
ponent of a complex that includes Smo, and in the absence of Hh, Ptc
prevents Smo from sending an as-yet-poorly-understood signal (Chen
and Struhl 1996; Alcedo and Noll 1997; Chen and Struhl 1998). The
result of this signal (or signals), whatever it is, is to liberate Ci protein,
the full-length form of which is a transcriptional activator, from a com-
plex that includes the products of the genes fused, Suppressor of fused
(Su(fu)), and costal; this complex both keeps Ci in the cytoplasm and
directs it to be proteolyzed to yield a truncated protein (CN) that be-
haves as a repressor (Aza-Blanc et al. 1997; Ohlmeyer and Kalderon
1998; Wang and Holmgren 1999). Thus, in the absence of Hh, Ci is
converted to a repressor that keeps Hh target genes off (including ptc
and wg), and in the presence of Hh, due to removal of Ptc, Ci remains
intact, mysteriously passes through various activation steps and enters
the nucleus, and activates Hh target genes.

Wg signal transduction begins with products of frizzled-family genes
(Bhanot et al. 1996; Bhat 1998; Bhanot et al. 1999). The details of Friz-
zled signaling remain mysterious, but, analogous to Hh signaling, the
crucial switch involves a cytoplasmic complex that restrains a tran-
scriptional regulator. In this case it is the product of the armadillo gene
that is targeted for proteolysis; Wg signaling leads to the release of Arm
from a cytoplasmic complex that includes the kinase encoded by shaggy
and a Drosophila homologue of the oncogene APC (a very complex lit-
erature is reviewed by Cadigan and Nusse 1997). Free Arm binds to
the product of pangolin, and Arm and Pan together act as a transcrip-
tional activator (Brunner et al. 1997; van de Wetering et al. 1997).

There are many other segment polarity genes that participate in the
process in flies, and that, when mutated, yield various phenotypes. We
believed that the basic codependence outlined above would be suffi-
cient to account for the basic function of the segment polarity network,
namely, to maintain an asymmetric boundary with wg expressed on
one side and en expressed on the other. Our goal was to start with the
simplest dynamical representation of the network and build up piece
by piece. Thus, to start with we abbreviated signal transduction path-
ways and refrained from including apparently redundant or “extra”
components. We thought that perhaps the core network, the simplest
network we could get to do the job required, would probably be rela-
tively fragile, and that all the other segment polarity gene products—
for instance, the transcription factor encoded by gooseberry (Li and
Noll 1993), or the Wg-inducible signaling inhibitor encoded by naked
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(Zeng et al. 2000)—might be required to make the network robust to
various kinds of perturbations. Thus, we were not dismayed in the least
when it turned out that our initial attempt to concoct a model was very
hard to get to behave properly.

In fact it slowly dawned on us that it was completely impossible for
our first attempt to work under any conditions. We had to add two
specific links, one of which was more or less well demonstrated but
ignored, and the other of which was, at the time, more or less a guess
(fig. 12.2, C). Completely to our surprise, however, it turned out that
with those two links in place, the core network was fabulously robust
to variation in both governing parameter and initial conditions. As de-
scribed in von Dassow et al. (2000), random sampling for parameter
values throughout an enormous, high-dimensional parameter space
allowed us to find “working” sets of values with unbelievably high fre-
quency. Further explorations (von Dassow and Odell 2002) showed
that the core network’s boundary-maintaining function is also robust
to architectural variations. In other words, once the right links are in
place, there is no one single way to make the network function; once
all the pieces are hooked up right, the lifelike behavior we sought to
reproduce in silico became intrinsic to the topology of the network,
rather than to any particular tuning of the connections and compo-
nents within it.

This is a very satisfying finding given a certain evolutionary hypoth-
esis that had originally been in our minds when we started the work. It
appears that the upstream aspects of the segmentation cascade are not
conserved among insects (see, for examples, Patel et al. 1992; Dawes
et al. 1994; Dearden and Akam 1999), the furthest-upstream compo-
nents not even beyond Diptera, but the segment polarity network
might be involved in segmentation in everything from flies to beetles to
grasshoppers and beyond (Patel et al. 1989; Nagy and Carroll 1994;
Patel 1994). Although there is not as much evidence supporting this
hypothesis as one might like, it remains appealing; the suggestion is
that the upstream mechanism that lays out segment boundaries in
other insects must be very different, despite the homology of all insect
segments and the conservation of the gene network assigned to stabi-
lizing those boundaries throughout development. Our results say that
this hypothesis is plausible: intrinsic to the topology of this network is
the ability to do the thing it does in embryogenesis, absent any extrin-
sic guidance, and if we could make an animal with only these genes,
then practically any bias on their expression among the cells of that an-
imal would result in at least one segmental boundary!

To summarize, our initial modeling effort resulted in at least six
specific, empirifally testable predictions:

1. Our model explicitly highlights a need for a repressor of engrailed
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in the anterior compartment and suggests that the N-terminal fragment
of Ci could fill this role. Another candidate, explored in later models
(von Dassow and Odell 2002), is Sloppy-paired (Cadigan et al. 1994b;
Grossniklaus et al. 1992); the model merely focuses attention on the
missing link; obviously, it is an empirical problem to figure out what
that link might be.

2. wingless autoactivation is functionally important and probably
conserved, and must follow certain guidelines (described in von Dassow
and Odell 2002) to fulfill its role. This phenomenon has received very
little attention in the literature, and our model explains its importance.

3. Interactions among segment polarity genes should exhibit mod-
erate to high cooperativity, except for interactions mediating negative
feedback between ci and ptc (Meir et al. 2002a; von Dassow and Odell
2002).

4. Our model “prefers” the Wg diffusion rate to be low, suggesting
that rapid diffusion makes pattern formation by this mechanism more
difficult. Indeed, several findings show that Wg cell-cell transport is
under fairly specific control (Dierick and Bejsovec 1998; Moline et al.
1999).

5. Since the model tolerates a variety of initial prepatterns, we
would predict that the specific inputs to the segment polarity network
from the pair-rule and gap genes will not be rigorously conserved even
within long-germ insects.

6. We predict that the segment boundary maintenance mechanism
is robust to quantitative variation in gene function. We are currently
trying to test whether the real segment polarity network exhibits the
same degree of robustness as our model.

Points 1 and 2 directly illustrate plausibility and inference appli-
cations for dynamical models. Although our initial model expressed a
more detailed summary of the network topology than was at the time
typical even of workers studying the segment polarity network empiri-
cally, we found that there were two specific defects that could not be
overcome even by choosing kinetic parameters carefully. One of these
defects was cured with the documented, but little-attended, phenome-
non of wg autoregulation (Hooper 1994; Vincent and Lawrence 1994;
Manoukian et al. 1995; Yoffe et al. 1995). The mechanism for this re-
mains poorly understood to date, but our model showed that the wg
autoregulation mechanism, whatever it is, may be central to the func-
tion of the segment polarity network even though it had heretofore
figured barely at all in discussions of how segmentation works. The
second defect also concerned a lack of attention by the community of
experimental biologists to a detail of the mechanism, in this case to the
regulation of en. Almost all the attention has gone to either the speci-
fication of the initial en expression pattern by pair-rule genes (DiNardo
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et al. 1988; Ingham et al. 1988), the subsequent dependence of en on
Wg or En itself (the classic account is Heemskerk et al. 1991), or to the
stabilization of the en activation state late in embryogenesis under the
control of the Polycomb—and Trithorax—group genes (e.g., Moazed
and O’Farrell 1992). The model forced us to notice what should have
been obvious in the first place: something has to shut en off in the an-
terior compartment.?

In experimentally tractable model organisms like Drosopbila, biol-
ogists are quite efficient enough to fill in these sorts of details sooner or
later with or without the help of models like ours. Maybe work like
ours can accelerate the process. Our approach is of far greater poten-
tial value if applied to less willing organisms where making transgenes
and knockouts and the like is either a major technical challenge or oth-
erwise out of the question. We have little intention of focusing our own
efforts in such areas ourselves, but the point we want to underscore is
the time has come that realistic enough computer models can make
plausible suggestions about how to fill in the holes; computer models,
unlike us, cannot be fooled by an arrow diagram backed by a rhetori-
cally compelling word salad.

Points 3 and 4 represent inferences from the models about how the
real mechanism might work, but also bespeak functional design. The
segment polarity network model can be thought of as a set of spatially
entrained switches in which the various stable states for each switch
are mutually exclusive within an individual cell, but the network is
structured such as to make these switches entrain each other to alter-
nate states in neighboring cells. The switches are based on nonlinear
responses, which could be due to cooperative binding effects; higher
cooperativity increases the likelihood of choosing parameter values for
which both switched states will be stable. In addition the negative feed-
back loop between ci and ptc keeps cells in the “ground” state respon-
sive to Hh signaling; low cooperativity within this loop makes it more
likely that it behaves as a homeostat, rather than generating oscilla-
tions. The mutual entrainment of neighboring cell states depends on
signals’ making it to neighboring cells but not much further; hence it
is harder (though not fatally so) to tune up parameters to achieve the
desired pattern the more rapidly the intercellular signals are allowed to
diffuse. This contrasts with Gierer-Meinhardt-style reaction-diffusion
models, in which the diffusion rates of intercellular signals determine
the periodicity of the patterns they can make (Slack 1983 provides a
critical review of this family of models).

Point 5 has some implications both for our understanding of func-
tional design, and also for the evolvability of the segmentation mecha-
nism. In describing the segment polarity network as a series of switches,
it is the initial conditions that determine which switch gets thrown in
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which cells. Again unlike the Turing-style models that have so often
been suggested to explain pattern formation, the segment polarity net-
work does not make patterns out of small perturbations in an undiffer-
entiated field. Rather, the segment polarity network stably maintains
(and can sharpen) a prepattern conferred upon it by anything which
biases the initial conditions toward one or another switched state on a
cell-by-cell basis. Whether or not the network can stably “make” a
particular pattern thus depends not just on the kinetic parameters but
also on the initial conditions. In the case of the target pattern we tried
to get the simple, core model to make (von Dassow et al. 2000), the
outcome is based on a race between en and ¢/, on the one hand, and
on the other hand on making sure that wg gets a quick enough assist
(from Ci) to keep itself on.* Thus, the model’s demands on the initial
conditions can be crudely stated like this: for any pattern of initial bi-
ases that swings these races in the right direction, there can be found
some set of parameters that allows the model to lock on and hold that
pattern. In other words, the blind watchmaker can fool around with
the upstream regulators as long as certain guidelines are not violated,
and as long as the kinetics can be tuned up at the same time.’

Point 6 surprised us most, and our lab is testing this prediction
empirically. We tend to think of robustness as a design feature, and as
something difficult to achieve. Certainly human-engineered devices do
not exhibit the degree of insensitivity to control parameters that we
found in the case of the segment polarity network; does nature need to
evolve robust designs, or is this kind of property generic to genetic net-
works? Moreover it is not yet obvious to us why evolution should have
made this mechanism so astonishingly robust, if indeed it is in reality.
Even less transparent is how this module came to be (although we have
an idea, discussed in Meir et al. 2002a, and touched on below); is its
present state and employment in flies a highly derived, finely honed de-
sign, or a lasting legacy of a lucky co-option early in the evolutionary
history of animal life? Only comparative data could answer this, and
despite the misleading impression given by some authors (e.g., von Das-
sow et al. 2000), we know very little about whether the segment po-
larity module is evolutionarily static or whether details of its architec-
ture adapt to different developmental modes, even within fruit flies.

Whence Robustness?

As recounted at the end of our first report (von Dassow et al. 2000),
we originally hoped to explore the mechanistic origins of robustness
in developmental mechanisms through in silico reconstitution. To re-
iterate, we expected that the simplest (but still realistic) models would
require us to carefully select parameters (by intuition or optimization
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strategies) to make it work, and that only carefully chosen initial con-
ditions would lead to the desired behavior. Our hope was that by mak-
ing progressively more complex models based on known interactions
not incorporated into the simplest model we would reveal which de-
sign principles evolution had hit upon to make the process in question
robust. There are a variety of flavors of robustness, such as tolerance
of parameter variation, stochastic perturbations, or initial conditions,
and it seems reasonable to expect that embryos, and cells everywhere,
need special circuitry to tolerate all these insults. Much of the com-
plexity we see in biological mechanisms might exist for the purpose of
endowing some core process with robustness.

This remains an intuitively appealing general hypothesis, but with
the segment polarity network it turned out that the core model is hard
to improve upon with respect to the basic tests we can subject it to.
Not only does it tolerate the kinds of variation enumerated above, but
it also tolerates numerous different wiring choices, including whether
or not certain secreted proteins diffuse, whether or not reactions are re-
versible, whether or not particular links and components are present,
and so on.

In a forthcoming report (von Dassow and Qdell 2002) we describe a
test for stripe sharpening, in which the wiring really makes a difference
in the performance of the network. The wingless and engrailed stripes
are both reported to narrow as cells rearrange during germ-band ex-
tension; cells that move away from the parasegment boundary lose wg
and en expression as they stray beyond the range of sustaining signals
(see, e.g., Vincent and O’Farrell 1992; review in Martinez-Arias 1993).
There are specific requirements for the model to mimic these behav-
iors: for wg, autoactivation must synergize with activation by Ci; for
en, there must be stoichiometric balancing of certain components of
the Wg signaling pathway. However, while those tests seem legitimate
(especially in Drosophila), they are almost certainly not general to all
uses of this network. The test in which we ask whether the network can
restrict en stripes to one cell width in the face of cell rearrangement is
probably irrelevant to segmentation in short-germ insects: in both grass-
hoppers and crayfish the En stripes widen as the segments develop (Pa-
tel 1994). Similarly, although we tested the ability of network variants
to develop the target pattern from a very crude prepattern, in all cases
we are aware of, En first appears in crisp stripes. Thus, we focus the
discussion below on the robustness of the boundary-maintenance func-
tion of the segment polarity network. This may not be the only biolog-
ically relevant behavior, but it is the one we have the best handle on.

We consistently found three determinants of robustness. First, the
higher the “cooperativity”¢ of most connections, the more variation
the network tolerages (Meir et al. 2002a). Second, the right mix of pos-
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itive feedback with both positive and negative cross-talk is essential to
confer broad domains of parameter space and initial conditions in
which the model functions. Third, intermediate steps tend to damp out
temporal oscillations. While the second issue is a design concern spe-
cific to this network, the others are generic. The role of intermediate
steps seems to be a byproduct of cooperative interactions. Because it
seems to be such an important generic way to make gene networks ro-
bust, we discuss how cooperativity confers robustness.

Consider, for illustration, a trivial signal transduction cascade in
which a signal activates a responder (say, a transcriptional activator),
which then activates transcription of a secondary target gene. If all the
responses are linear-saturating curves, then the output tracks the input:
end of story. The more positively cooperative the response (we stretch
the notion of cooperativity a little), the more a small change in the in-
put around the threshold will result in a large change in output. Since
the responses must saturate in the physical world, the higher the coop-
erativity at each step, the closer the whole chain will be to an all-or-
none switch. This may not immediately strike one as the basis for ro-
bust behavior, since to call something robust roughly means it behaves
the same for a variety of conditions. However, all-or-none responses
mean that the behavior of a complex system becomes less sensitive to
the exact value of off-to-on thresholds. In this pedagogical example,
if the signal is moderately above the threshold, then we get a full re-
sponse from the responder, which means that, as long as “full on” for
this gene is also above its activity threshold, we get a full response from
the target. This also explains (partly) why intermediate steps increase
the robustness of the model; oscillations in the level of some regulator
are damped by sharply thresholded dose-response curves as long as the
regulator concentration never gets too close to the threshold level. As
an aside, a corollary is that introducing delays would not be likely to
improve robustness, and indeed might promote oscillatory behavior, in
a network composed of more or less linear interactions.”

This is fine as long as the behavior we are interested in is one that can
be described solely in terms of whether genes and enzymes are “on” or
“off.” So far, that is all we have demanded of the segment polarity net-
work. But surely there are downstream effects of these genes that are
differentially sensitive to quantitative levels of segment polarity gene
expression. In imaginal discs Strigini demonstrated the expression pat-
terns of various Hh and Wyg targets are sensitive to local differences in
the availability of these signals (Strigini and Cohen 1997, 2000). We
have not yet explored how these phenomena could work, but these tar-
gets may simply be tuned to respond at threshold signal concentrations
near the maximum level that that signal (or its effectors) could achieve.

If we modify the signal transduction example slightly, it reveals that
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cooperativity does not beget all kinds of robustness. What if the re-
sponder has two targets, the output and an inhibitor? Imagine that this
inhibitor both negatively feeds back on the responder and also feed-
forward inhibits the output (fig. 12.3, A). It turns out that this device
has a variety of behaviors if high cooperativity is allowed in all the in-
termediate connections. The output can have a threshold response to a
signal, as before (fig. 12.3, B). However, it can also exhibit an upper
threshold above which it is inactivated, much like the response of gap
genes to maternal morphogens in Drosophila (fig. 12.3, C). There are
a variety of oscillatory regimes, including ones in which the period is
tuned by the signal. However, if connections are all constrained to
have low cooperativity (<2) then an entirely different kind of robust
behavior emerges: the output can respond at intermediate levels over an
enormous range of signal concentrations (fig. 12.3, D); in other words,
this simple system buffers the input. Thus, cooperativity makes all-or-
none switch-based mechanisms more robust but makes it difficult to
obtain buffered responses.®

Furthermore, we have found that the segment polarity model sug-
gests that some interactions, specifically those between ¢i and pic,
should have low cooperativity. Our core model tends to exhibit strong
oscillations in the levels of full-length Ci and its derivative, CN. This
behavior does not necessarily prevent the model from adopting stable
patterns for other components, presumably (again) because coopera-
tivity provides buffering as long as the input well exceeds its activity
threshold. Nevertheless, forcing high cooperativity for Ci-ptc interac-
tions leads to apparently inaccurate predictions about the relative
strengths of Ci and CN and leads to oscillatory behaviors that seem un-
realistic. Why? Ci and ptc form the only strictly negative feedback loop
in the model. Full-length Ci activates ptc, but free Ptc causes Ci to be
cleaved into CN, which represses ptc. If these interactions are governed
by linear-saturating curves, then they can easily find a steady state,
whose position in state space is tuned by the availability of Hedgehog.
Equilibration depends on steady responses to changes in concentration
of each component. However, sharp thresholds mean targets in effect
fail to respond to changes in regulator levels in a certain range and then
respond abruptly near the threshold. As in the toy model above, the re-
sult is oscillations.

Slack (1983) and Edgar and colleagues (Edgar et al. 1989) both dem-
onstrated the requirement for threshold responses in the mechanism of
cell state switches, so our findings merely pin that architectural principle
to another specific case. Furthermore, again reminiscent of Edgar and
Odell’s model of a subset of the pair-rule genes, in our model the spa-
tial regime of mutually entrained cell states depends on negative cross-
talk among the active genes in each state. On the basis of experiments



This is only likely with /
nearly-linear pathways

Fig. 12.3.—A potentially homeostatic signaling pathway. 4, A signal, S, promaotes either the activity or the synthe-
sis of o responder, R, which in tum promotes the activity of on output, 0. Simultaneously, high levels of R increase
the activity of an inhibitor, |, which suppresses both the output and the responder. Each of the links represents o po-
tentially cooperative requlatory effect. B—D, Charts showing steady-state output level (solid fines) in response to o
grodation of input signal (dashed lines). When most links ore cooperative, the most common responses ore o simple
threshold response (B) and separate thresholds for activation and inhibition (C); in both cases the output is either full
on or full off. High cooperativity also fosters various oscillatory behaviors (not shown). If most interactions are linear
or nearly so, then it becomes possible to find conditions under which the output responds at o fixed level over a large
range of input signal strengths (D).
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with protein synthesis inhibitors, Edgar and Odell modeled the pair-
rule genes as if they were basally active. In the case of our segment po-
larity model, only ci is basally activated, so the cell state regime de-
pends also on positive feedback both within some of the cell states and
between the different cell states in neighboring cells. To repeat, the
mechanism is a race between en and ci; En, via hb, enlists the help of
wg expressed by neighboring cells to keep e active, and Wg maintains
itself through a still-vague mechanism that probably involves both slp
and ci. Steep thresholds help ensure that any edge in the races pushes
the leader toward the arttractor in the dynamical system’s phase space,
the stable cell state, characterized by the leader’s expression. Mean-
while, thresholds help make sure that one cell state entrains its neigh-
bors to adopt a different one, and vice versa, thus reinforcing the origi-
nal choice. This argument at least partially explains the robustness
of the segment polarity model’s boundary-maintenance function to
parameter variation. Further, any spatially varying biases in the initial
conditions swing the cell state choice in one or the other direction, and
since any such bias will do for some choices of parameters, this ex-
plains the robustness to initial conditions.

A final note: in the context of the segment polarity model, there is a
direct relationship between (crudely speaking) the average cooperativ-
ity of all interactions, and the degree to which the network tolerates
variation in either parameter values or initial conditions or architec-
ture. In other words the model predicts that canalization of this gene
network is a direct effect of nonlinear, threshold dose-response func-
tions, as anticipated by Gibson (1996). The question often arises, How
could canalization evolve? Teleologically, it seems that of course canal-
ization should be selectively advantageous in certain circumstances.
However, on the basis of population genetic models Gibson and Wag-
ner (2000) suggest that it is actually rather difficult to find conditions
under which canalization will arise through positive selection on some
“canalizing” allele. These authors express the concern that such re-
sults may reflect only the inadequacy of canonical population genetic
models.

We admit to such ignorance of population genetics that we could not
even begin to agree or disagree, but our models do make two interest-
ing suggestions: first, that in the segment polarity network (and the
neurogenic network; Meir et al. 2002b), canalizing mutations might
arise readily. For example, we found that there are mild to strong vari-
ational biases? on parameters as diverse as the Wg diffusion rate, the
avidity with which En represses ci, and the maximum cleavage rate of
Ci protein (von Dassow and Odell 2002). These things should be baby
steps by mutation, point mutations adjusting the match of enhancer
site to regulator, affinity of ligand and receptor, and so on. In other
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words, the robustness of the model can be “tuned” via quantitative
changes in the kinetics of intrinsic components, without the presum-
ably more involved evolutionary step of changing the topology of the
network (i.e., by adding new links or components).

Second, on the basis of the arguments above, it is clear that the
higher the cooperativity embodied within the model’s many positive
feedback loops, the more it could tolerate (1) variability in individual
parameters (i.e., mimicking genetic mutation), (2) coordinate, simulta-
neous changes in many parameters (e.g., to mimic variation in tem-
perature or oxygen supply), or (3) stochastic fluctuations over the time
course of pattern formation (due to inherent noisiness of gene expres-
sion or cell division or whatnot). Thus, for networks that work like
these (i.e., coupled cell state switches) canalization against several
sources of variability (mutation, environmental perturbation, develop-
mental noise) may be coordinated. Ancel and Fontana (2000) point
out that the reduction of phenotypic plasticity (which we think equates
with canalization against either environmental variability or develop-
mental noise) “requires a genotype-phenotype map in which plasticity
mirrors variability” with respect to genetic mutation. They call this sit-
uation “plastogenetic congruence” and show that it is a generic feature
of RNA folding, and that therefore “genetic canalization will ensue as
a byproduct of selection for environmental canalization.” We think
something similar holds for gene networks, and we expect that by
comparing the level of developmental noise in wild-type versus sensi-
tized mutants of the segment polarity and neurogenic pathways we will
be able to test whether such a congruence exists in reality.

Hierarchical Structure of Genetic Modules

We have often wondered how we can define the boundaries of genetic
modules. What criteria define a module, as opposed to just another
tangle in the genetic web? No one doubts that life as we know it in-
volves gene networks with intrinsic behaviors; the genome of any or-
ganism is such a network, as is the genome of any virus. Similarly, no
one doubts that such things are organized into modules; genes them-
selves, after all, are modules of a certain kind, as are genomes, at a very
different level of organization. The question is to what extent genomes
break down into, or genes and their products conspire to form, logi-
cally separable guilds of the metabolic milieu—rthat is, intermediate
entities, made of genes and parts of genomes, that do something we can
comprehend in isolation. There are a few cases that seem intuitively
obvious: the lac operon, the yeast mating-type switch, bacteriophage,
the cell cycle clock, and the segment polarity network. What do they
all have in common? What exactly is it that our intuition tells us about
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these mechanisms? What criteria can we extract from our intuition
that we can generalize? We do not have an answer yet because it turns
out that none of the straightforward criteria (like connectivity) or sim-
ple analogies (e.g., to object-oriented programming; see below) seem
useful.

It happens that the way biologists investigate genetics disposes the
discovery process to reveal knots of locally relevant genes whose prod-
ucts all participate in some way in the production of a certain pheno-
type or characteristic. Perhaps genomics will change this, but presently
it is the case that one finds such local tangles and has no way of know-
ing whether the membership in the tangle represents just the extent of
exploration to date or the core membership of a genuine subunit of the
genome. One can make a credible argument that developmental ge-
netics is only possible to the extent that such local subunits are realis-
tic; after all, pleiotropic genes are more difficult for geneticists to ana-
lyze than are those genes that specifically regulate particular characters
(think of the Drosophila ras homologue, which seems to be involved in
practically everything, versus the bicoid gene, which has a fairly spe-
cific function).

This hints at some kind of a criterion based on connectivity. It is
tempting to suggest that what distinguishes module from not-module
is a degree of interconnectivity, or in the strengths of connections. The
suggestion is commonplace that modules are composed of “strong” (or
“dense”) connections, but have only “weak” (or “sparse”) connec-
tions to other things. Such a notion turns out, for our purposes, to be
largely fruitless. Consider an example: Ras has a starring role in EGF
signaling, but only among its other roles; EGF signaling, in turn, one
might say, is a module unto itself, a part of diverse morphogenetic con-
trol processes, appearing in various developmental mechanisms, and
not just in a cameo, either. Do we say that EGF signaling does not
count as a module unto itself because Ras participates as an essential
step in other pathways? Do we say that in Drosophila ventral ectoderm
patterning and dorsal eggshell patterning are logically inseparable be-
cause they share the EGF pathway? We think not. Consider an anal-
ogy: The futures markets for various agricultural products are each
governed by various causal factors, some unique but many not. No one
would claim that the dynamics of the market in pork bellies was in-
separable from that in soybeans simply because they share some causal
factors (like the weather). And no one would claim that the various fu-
tures markets were not separable from treasuries and stocks simply be-
cause they are all influenced, and strongly, by the price of crude oil. In-
stead, we think that the crucial thing our intuition tells us is to look for
things which bave their own intrinsic dynamics.

Furthermore, this suggests that rather than a how-to-break-it-down
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problem, we really have a how-to-build-it-up issue. And gene networks,
like economics, are richly hierarchical. Thus, we see the problem of
defining a module in terms of the following thought experiment: Given
some behavior of interest, which known facts account for that behav-
ior? And, if there are more known facts than we need to account for
the behavior of interest, what do they contribute? Hence, we have
often described our approach to modularity by analogy to test-tube
biochemical reconstitution, in which the procedure is to add purified
components until some desired complex function emerges from the
conspiracy of core parts and then try to add more purified components
to see how they affect the performance or other aspects of the system
of interest. No one would claim that cellular life can proceed without
translation of mRNA to proteins, or that translation of the cell’s pro-
tein complement can proceed without the rest of the cell’s activities. No
single molecular species can do it. Rather, we consider translation a
unified phenomenon among the cell’s activities because biochemists can
reconstitute that function from purified extracts. So, our approach is to
use computers to do the thought experiment “What if we had an animal
with only these genes?” we add gene products and molecular interac-
tions to a simulation until we get some behavior that seems lifelike.

Figure 12.4 illustrates the hierarchical nature of gene networks us-
ing the neurogenic network. At the heart of this network is a bistable
switch consisting of the proneural genes, which encode basic helix-loop-
helix ((HLH) transcriptional regulators, here represented by achaete
(ac) and scute (sc). The products of these genes not only feed back posi-
tively on their own production; they also cross-activate each other
(Martinez and Modolell 1991; Skeath and Carroll 1991; Van Doren
et al. 1992). It is better to say the proneural circuit could make a bi-
stable switch: there exist sets of parameter values such that there is a
stable “off” state in which none of these genes is expressed, and a
stable “on™ state in which both are. If one pushes the system toward
one or the other steady state, beyond some threshold determined by
the governing parameters (most significantly those governing the po-
tency of Ac and Sc proteins as regulators), the system will evolve to-
ward and remain at that state until perturbed across the threshold
again. For example, a sufficient pulse of ac transcription might, under
certain conditions, be sufficient to flip the switch on. Thus, we claim
this little circuit is a switch module; that is its intrinsic behavior (al-
though it must be kept in mind that the behavior depends on parame-
ter values, etc.).

As it happens, among the direct regulators of the proneural genes
are some of the bHLH proteins encoded by genes of the Enbancer-of-
split complex (E(spl)-C) genes (Oellers et al. 1994; hereafter we discuss
these genes for simplicity as if there were a single one, say, E(spl)-m8
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Fig. 12.4. —A hierarchy of modules. The kemel of the neurogenic network is o switch packaged into o homeostat.
4, The proneural genes achaefe and scute encode franscription factors that stimulate their own and each other's pro-
duction. As long as these interactions are cooperative, this positive feedback loop can be o bistable switch. If the syn-
thesis rafe of Ac and Sc is sufficient to overwhelm degradation, their concentration increases until the synthesis rafes
saturate, degradation catches up, ond the system remains of o stable “on” stafe; otherwise, degradation turs the
switch off. B, Enhancer of splitis a direct torget of Ac and Sc octivation, but ifs product shuts them down. At the some
fime it inferferes with its own octivation by the Ac and Sc. This circuit can still function os o switch but can also hold
on intermediate steady state or oscillafe around some middle expression level. C, The Delta/Notch signaling pathwaoy
couples the proneural / E(spl) homeostat in one cell to the same circuit in neighboring cells, because highrlevel Ac and
St (as the proneural switch heads foward “on”) activates DI, and activated N leads to activation of £(spl), which shuts
the proneural switch off. DA, Daughterless; SU(H), Suppressor of Hairless.

itself). E(spl) not only represses the proneural genes, but is also a di-
rect target of them; Ac and Sc activate E(spl) transcription (Kramat-
schek and Campos-Ortega 1994; Singson et al. 1994). Thus, layered
around the proneural switch is a negative feedback loop. In addition,
E(spl) interferes with its own activation by Ac and Sc. The larger cir-
cuit retains the ability to make a bistable switch, albeit the volume
fraction of parameter space in which it does so is, while quite large,
still much smaller than the analogous fraction for the proneural switch
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without E(spl). The negative feedback loop adds interesting new behav-
iors: under some conditions the circuit oscillates; under other condi-
tions it achieves a stable intermediate state, neither on nor off. In either
case it is obvious that if E(spl) were suddenly unplugged, we would be
left with the proneural switch; that is, the new loop enables the circuit
to sit still or wobble around between on and off, undecided, until some
extrinsic influence comes along and defeats E(spl).

These clever switches-within-homeostats, one in every cell of some
field, are coupled to each other through cell-cell signaling via Delta
(DI) and Notch (N). The proneural genes promote DI expression (Ku-
nisch et al. 1994); DI encodes the ligand for a receptor encoded by N
(Fehon et al. 1990); Notch, upon binding DI, gets cleaved, and the in-
tracellular portion forms a complex with the transcription factor en-
coded by Suppressor of Hairless (Su(H)); together they activate E(spl),
which represses the proneural genes (Bailey and Posakony 1995; Le-
courtois and Schweisguth 1995). In a cluster of equipotent cells, in
which some influence has gotten the proneural switch started (perhaps
to the intermediate “deciding” state), the idea is that, because of sto-
chastic differences or initial prepatterns or even specific localized sig-
nals, one cell might get a little bit ahead of the others in DI production,
or behind in N activity, such that it experiences less N signaling than
the others, and thus flips the proneural switch on, consequently en-
training neighbors to switch the same switch off (reviewed by Simpson
1997). We have shown that this mechanism is plausible; that is, a
model encompassing the facts diagrammed in figure 12.4, C, succeeds
in picking out a lucky neuroblast and shutting its neighbors off, if there
is some initial difference to go on (Meir et al. 2002a).

Now, when we contrast parts A, B, and C of figure 12.4, which one
is the module? We say all of them. The proneural switch is no less a
switch because of the presence of E(spl), even if E(spl), when unmo-
lested by extrinsic factors, completely abolishes switching. Similarly,
the mutual entrainment of switches in a cluster of cells by DI-N signal-
ing in no way negates the fact that the Ac-Sc-E(spl) circuit has certain
intrinsic behaviors. Modularity criteria based on connection density or
strength would have a hard time putting a pair of scissors into figure
12.4, B, or even 12.4, C. That is why we prefer to think of genetic mod-
ularity in terms of the intrinsic functional behavior of some network.

It was only recently that we fully appreciated the hierarchical orga-
nization of the segment polarity network. That network, if we consider
a version that incorporates sloppy-paired (fig 12.5, A), consists of two
subnetworks: one based on the organization of the Hh signaling path-
way, and the other, we think, based on interactions between targets
of Wg signaling. The former (fig. 12.5, C) makes center-surround
patterns (a Hh-producing center surrounded by cells expressing genes
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Fig. 12.5.—The segment polarity network is fwo subnetworks patched together. 4, A version of the segment polar-
ity network that shows how sloppy-paired might mediate wingless autoregulation. This network could be snipped in
the middle to yield two subnets that each make center-surround pottems on their own: a coupled positive ond nego-
tive feedback loop consisting of wg, en, and sip (B), and the Hh-PtcCi signaling pathway (C).

regulated by Ci, the transcription factor that mediates the response to
Hh); the Hh-binding component of the Hh receptor is encoded by the
gene ptc, which is also activated by full-length Ci and repressed by the
N-terminal fragment of Ci. Hh signaling inhibits cleavage of Ci to form
the repressor. Thus, Hh signaling leads to increased Ptc expression at
the cell surface, which sequesters Hh and limits the range of signaling.
This subnetwork is unable to make asymmetric boundaries, the way
the complete segment polarity network does.
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The other subnetwork may consist of en, wg, and slp. slp encodes a
transcriptional regulator that represses en, activates wg, and is acti-
vated by Wg and repressed by En (fig. 12.5, B) (Bhat et al. 2000; Cadi-
gan et al. 1994b; Grossniklaus et al. 1992; Lee and Frasch 2000). This
circuit, too, makes center-surround patterns, but recently we realized
that under certain conditions this little subnetwork is able to do the
same task as the whole segment polarity network. However, it does that
task much less robustly than the complete network. Thus, by patching
together two center-surround makers, one of which could have been
the ancestral asymmetric-boundary module, we get a larger network
that does the task of maintaining an asymmetric boundary very ro-
bustly. In no sense does the larger network invalidate the existence of
the building blocks it is made out of; indeed, it is the hb-ptc-ci circuit
that seems to have been co-opted most readily over the course of evo-
lution for new roles (see, e.g., Goodrich et al. 1996).

Gene Networks and the Adaptive Landscape

Sewall Wright’s metaphor of the “adaptive landscape” (see Futuyma
1998) conceives of a high-dimensional topography in which each phe-
notype (or genotype) is a point in the space of character states and
associated with some fitness value (the independent variable that is the
“height”). Thus, fitness is a function of phenotype (or genotype, if one
prefers to think in terms of fitness as a function of continuously vary-
ing genetic traits), and the surface defined by that function is the land-
scape which evolving organisms populate, driven across it by mutation
and winnowed by selection. The topography of the adaptive landscape
constrains the evolvability of the traits that determine the landscape
itself. Figure 12.6 diagrams some simplistic stereotypes in which fitness
is a function of a single quantitatively varying trait. Intuitively, some of
these possibilities will be easier to navigate using mutation, selection,
and recombination. Should a population find itself on the sloping, low
hill in figure 12.6, A, there is a trivial path by mutations of small effect
(assuming that mutations can quantitatively affect this trait along the
entire axis shown) that leads through selectively favored intermediates
to the top. Not so for figure 12.6, E, although it is hard to imagine such
a function for a simple quantitative trait. Even so, the point is that
there may be no path (or even one that is easy to find by random mu-
tation) that allows a population to move from local, but suboptimal,
peaks to regions of the trait space associated with higher fitness values.
Ruggedness in the fitness function may thus seriously constrain the
rate of adaptation. Different shapes of the fitness function lead one to
expect different levels of within-population diversity; the plateau of
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Fig. 12.6.— Possible adaptive landscapes in one dimension. An adaptive londscape s the surface defined by fifmess
as o function of raifs, trait metrics, or character stofes. For simplicity this figure ossumes that the traits of inferest ore
continuous variables of which fitness is a continuous function. Traifs of interest might be either phenotypic choracters,
such os the length of a limb, or genotypic or physiological characters, such as the offinity of an enzyme for ifs sub-
strote. Mutation causes populations to diffuse across the adapfive landscape; selection causes populations fo climb. In
Athere is o Fujtfike smoothsided peok. If selection is strong enough, then the entire population should evenfually
cluster around the peok, because starting at any trait value there is o monotonic path to the troit volue with the high-
st fitness. B shows o mesa. Again, monotonic paths lead fo the fop, but in this case a wide range of trait values ore
virtually indistinguishable. In C two peaks are divided by an alpine valley; both peaks ore nearly equivalent in fiess,
but unless mutation s very strong relative fo selection, a population will probably not travel between peaks and i
stead will cluster oround whichever peak it arrives at first. In D there is o mountain range, illustrating the possibility
that the most fit volue for o particulor trait might depend on the environment, the genetic background, o even the
makeup of the population. Finolly,  ilustrates that it is conceivable thot odaptive landscapes could be very rugged in-
deed. A population frying to navigate £ foces an adoptive Cofch-22: f mutation is weok relative fo selection, the popy-
lofion will become trapped on local, but seriously suboptimal, pecks, but if mutation is strong, then the populafion is
very unlikely to be able to remain on any peak that it does find. If ruggedness were very common, we might expect
to find that mutation rates, the rate of recombination, and the degree o which the effects of mutations are buffered
from phenotypic effects are focultatively voriable properties of individual organisms.
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figure 12.6, B, would allow mutation to disperse populations across
the most fit domain with a spectrum of neutral phenotypic variation.

By analogy with the adaptive landscape, consider the surface mapped
out by the goodness-of-fit function we employ to evaluate the behavior
of gene network models. If we were to pretend that only a single be-
havior of the gene network was functional, or rather that our function
captures everything significant about that network’s behavior, inde-
pendent of ecology, then the surface determined by the objective func-
tion would be a proxy for the adaptive landscape. We can ask how easy
this landscape would be to navigate by a local search in parameter
space (analogous to what evolution accomplishes by selecting upon
heritable variation in populations). We can ask how structural or ar-
chitectural features of the network determine the topography of this
landscape (for which we do not have a catchy name). We might be able
to ask what kinds of mutations are likely to be neutral, and which
might result in what kinds of phenotypic variation. Obviously no one
can yet answer these questions, but the ever-improving knowledge of
how limbs, fins, eyes, eyespots, teeth, toes, and so on are actually made
during development is surely opening up this line of exploration. If
biologists can develop a picture of the genetic module underlying any
of these phenotypic modules, perhaps it will become possible to draw
parallels between evolutionary trends manifest in nature and the be-
havioral repertoires of the genetic networks that shape development.

We have used several rudimentary approaches to come up with a
caricature of the terrain in which the segment polarity and neurogenic
networks live (von Dassow et al. 2000; von Dassow and Odell 2002;
Meir et al. 2002b). Again, the parameter space combined with the
goodness-of-fit function we use to judge the pattern produced by the
model maps out a topography analogous to the adaptive landscape, '’
but we invert it for mathematical convenience. This function monitors
the model’s dynamics for measurable qualities that could possibly cor-
respond to adaptive qualities of the segmentation mechanism (see sup-
plement to von Dassow et al. 2000 for details). For example, in the
case of the segment polarity network, the model gets better scores the
earlier it achieves the desired pattern, the more stable that pattern is,
and the sharper the definition of the pattern is; maybe there is evo-
lutionary pressure to develop faster, perhaps oscillations lead to unre-
liability in quantitative control of downstream modules, and maybe
sharply differentiated cell states are more stable than poorly differenti-
ated ones. We can use sampling strategies, or various nonlinear optimi-
zation methods, to ask how easily we can navigate the parameter space
of the model. The most straightforward approach is to cut transects
across the parameter space: starting from a point at which the model
gets a good score, we can hold all but one parameter fixed and then
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Fig. 12.7.— Profiles of the segment polority model's parameter space. 4, Transects along each named porameter’s
entire allowed range. Each box represents a case in which we started with o parometer set that worked, then varied
o single parometer while holding the others fixed, and monitored the behavior of the model. The horizontal axis is the
range of voriation, which s three orders of magnitude, on o log scale. The vertical axis is the score the model received
ot that point in porometer space. The dashed line represents the cutoff above which we judge the model to have foiled.
Although the scoring function is designed to respond linearly around this region, note the predominance of sharp thresh-
olds rather than slopes. Two cases are shown for each of five porameters which, from top to bottom, govern how po-
tently Wg activates en, how effective CN is ot repressing en, how effective Ci s at activating pfc, how potently En re-
presses i, ond how fast Wq equilibrates between apposite faces of neighboring cells (the Wg “diffusion” rate). For
the first four, the left side represents pofent regulation, the right side weak regulation; for the Wy diffusion rae, the
left side represents slow transport, the right side fost. The narrow gap in the fourth row of the first column represents
approximotely fourfold voriation in thot porticular parameter. At the ather extreme, the fifth row of the second column
is a case in which the model is completely insensitive fo this parometer. B, Histograms showing the frequency of work-
ing porometer sefs as a function of the same parameters os in A. The horizonfal xis is the some os in A. Approxi-
mately 1,200 working porameter sets, found in o random somple, are represented here. The interprefation is that
working porameter sefs are most dense wherever there are peaks in the distribution. For example, the fourth row
means that the model is most likely o work when En is o moderately weak, but not foo weak, repressor of ci. The
plots in A are taken from von Dassow et ol. 2000, ond those in B are token from von Dassow ond Odell 2002.
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vary the remaining parameter over several orders of magnitude while
tracing the goodness-of-fit function. Several such transects are depicted
in figure 12.7, A, and they are quite typical: a wide, flat-bottomed can-
yon, bounded by steep-walled cliffs (compare to fig. 12.6).

One can look for regions of the parameter space in which working
sets are especially frequent. Given enough randomly sampled working
parameter sets, we can do this by looking at histograms showing the
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distribution of values for each parameter among all the working sets
found within defined boundaries. Some parameter distributions exhibit
biases toward some neighborhood within their allowed range, and oth-
ers do not (fig. 12.7, B). We can bracket the peaks and thus narrow the
boundaries of the parameter space. For the segment polarity network,
we found (von Dassow and Odell 2002) that bracketing the modes
with a tenfold range, instead of the thousandfold range in the original
sampling, yielded a hit rate of 4 in 5, rather than the 1 in 200 reported
for the original search. Thus, for this model there is a vast central can-
yon in which it is hard to find parameter sets that do not work.

In addition, we have tried optimization strategies to test whether
one can get from outlying regions of parameter space into the central
basin, and it seems that one can. However, the difficulty is that the typ-
ical sample point lands either above the canyon rim or on a flat, or at
best gently sloping, canyon floor (see transects in fig. 12.7, A), and
most nonlinear optimization strategies cannot tell where to go from ei-
ther starting point. One can perturb the parameter set, trying to get the
optimizer to ride down the ridgelines instead, and often this enables
the optimizer to stumble its way into the central basin (G. von Dassow,
unpublished observations). However, so far the most useful strategy has
been to mimic what populations do: mutate and recombine (described
in Meir et al. 2002b). It turns out that both models have a Grand Can-
yon in the middle of parameter space, within which the network toler-
ates essentially neutral variation in every parameter, and many tribu-
taries feed into this canyon from its edges.

The discussion above pretends that the segment polarity network
has a single functional behavior, and that we know exactly how to
characterize it. This is because we have focused on its role in seg-
mentation, which is relatively well understood, and on the question of
whether it is plausible that this circuit could be dissociated from up-
stream developmental pattern-forming processes. Because of our origi-
nal motivations in making this model, we have so far explored much
less about how the same network could itself generate phenotypic vari-
ation, but it is certain that the real segment polarity network has been
a major player in the evolution of the insects. In Drosophila and other
insects, the segment polarity network or a variant thereof provides the
basic plan for all the appendage primordia; it is involved in the pattern-
ing of the Drosophila gut; it lays out the pattern of cuticle structures in
the larva; and so on. This module has found re-use in a wide variety of
contexts in Drosophila alone, and in each case it is used to do some-
thing slightly different. Along the anterior-posterior compartment
boundary in the imaginal discs, this module establishes a system of
morphogens with complex responses by neurogenic patterning circuits
(Mullor et al. 1997), vein-producing mechanisms in the wing (Gomez-
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Skarmeta and Modolell 1996), the proximo-distal patterning process
in the leg (Diaz-Benjumea et al. 1994), and more. In the butterfly wing
the segment polarity genes are re-deployed to position the eyespot (Keys
et al. 1999). In each case one might hypothesize that “developmental
context,” whatever that is, selects among the various behaviors in the
repertoire of the segment polarity module.

However, the modularity notion cannot go too far: it is not at all
clear, in each of these cases, that the “module” is really the same. For
instance, in imaginal discs it is impossible to imagine that engrailed de-
pends on Wingless signaling since engrailed is expressed throughout
the entire posterior compartment and Wingless only in a narrow stripe
along the anterior-posterior boundary in leg discs, and in an even less
suggestive pattern in wing discs (Baker 1988). However, in the context
of embryonic segment specification, both in reality (Heemskerk et al.
1991) and in the more detailed versions of our model, Wg signaling is
required only to get engrailed through an initial phase. Perhaps there-
after en expression is clonally inherited (or, in effect, autoactivated),
even in all the posterior compartment cells of the disc. Realistically, the
picture is somewhat more complicated, because in discs (but perhaps
not in embryos) ectopic Hh expression can induce en and establish a
novel posterior compartment (Gibson and Schubiger 1999; Guillen
et al. 1995). Surely, aside from nice, pat ideas about re-deployment
of modules and so forth, the evolutionary process will adapt every in-
stance in which the segment polarity gene network is used according
to the particular pressures on the trait in question and according to the
opportunities the network affords for modifying its behavior.

In our future work we will attempt to account for how this network
has been re-deployed in so many contexts, and what is different about
the way it works in each one. In which cases has the network been re-
structured to perform different tasks (i.e., to make variant modules),
and in which cases do extrinsic factors (such as the initial prepattern)
merely select among the behaviors of the module? We have some pre-
liminary ideas about what the module could do given different initial
conditions or parameters or even topologies. For example, figure 12.8
shows a few alternate patterns produced by the simplest version of the
model. This repertoire (which is incomplete, consisting of just a few
patterns that are easy to find and are stable) emerges from variation in
parameters but identical initial conditions (referred to as the “crisp”
stripe prepattern in von Dassow et al. 2000). Parameter variation is
analogous to quantitative changes in gene function but also could rep-
resent modulation by extrinsic control. Thus, figure 12.8 shows that
the same topology could “do something else” if either mutations or ex-
trinsic factors could tune it up appropriately. For a hypothetical exam-
ple, some transcription factor, extrinsic to the segment polarity mod-
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Fig. 12.8.—Nearneighbor pattems made by the segment polority netwark. Each pattern results with one in every
few hundred or thousand random parometer sets. 4, A degenerate patterm, the only striped pattem the model could
make without wg autoregulotion and repression of en by CN. B, A patter resulting from weak or no repression of en.
C, Broad, overlopping stripes of wg and en. 0, The pattem resulting if wy is strongly activated by Gi but weakly re-
pressed by CN. For oll of these, parometer sets that make these patterns ore eosy to find in the neighborhood of po-
rometer sets that moke the standard patter.

ule, could “tune” the module’s behavior by modulating the effect of,
say, CN on engrailed, thus causing the model to make a different pat-
tern (such as fig. 12.8, B) in some developmental context where that
extrinsic factor is expressed. This scenario corresponds to the notion
of selector genes which locally modulate developmental processes; the
Hox complex genes, engrailed, and vestigial are just a few of the genes
known to behave as selectors with respect to processes as diverse as
denticle patterns, neuroblast formation, and adult appendage develop-
ment. Another repertoire (not shown) results from variation in the ini-
tial conditions. Both sets represent a sample of the near neighbors in a
pattern morphospace that can be explored by tuning the control of the
segment polarity network. In other words, they’re what's just up the
canyon rim. While we cannot yet pin any one of them to a specific, real
instance in a living organism, surely this “tuning” analogy captures
something analogous to the way in which the evolutionary process tin-
kers with its tools.
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Analogies for Genetic Architecture

He his fabric of the heav’ns hath left to their disputes, perhaps to move his laughter at
their quaint opinions wide hereafter, when they come to model heaven and calculate the
stars . . . how build, unbuild, contrive, to save appearances.

—Raphael to Adam, in John Milton’s Paradise Lost

It seems tempting (to us and others) to compare genetic networks to
other more familiar or man-made networks: electronic circuits, neural
networks (the modeler’s kind or the real thing), computer code, the in-
ternet, and so on. Analogies are at least as useful for the distinctions as
for the similarities. Here we want to critique a common analogy with
computer programming code.

One could possibly argue that the prevalence of the “developmental
pathway,” the “genetic program,” or related metaphors owes some-
thing, historically, to the development of serial-instruction-chain com-
puting machines. It would be interesting to know in a scholarly way,
but our impression is that the embryology literature prior to the inven-
tion of digital, instruction-chain computers does not emphasize the no-
tion of a chain of instructions, with the possible exception of the liter-
ature on induction phenomena. Even in the case of induction, most of
the discussion took place in the context of the dynamical notion of the
“morphogenetic field.” Since the elaboration of the Central Dogma of
Molecular Biology, pathway and program metaphors seem much more
common, and developmental biologists do not seem to have used the
notion of a morphogenetic field as if it had, any longer, the same ex-
planatory power that it had been invested with in an earlier era.

So it is tempting to draw a parallel between the hypothesis of ge-
neticamodularity and object-oriented computer programming. Object-
oriented programming means dividing up a computer program into
building blocks that each encapsulate certain procedures, functions,
and data. Each object is an instance of a “class™ definition; the class
defines a set of behaviors for all objects of that type and defines which
data those objects store. The class also defines the “interface” of ob-
jects of that type: what messages they know how to interpret, what
data they allow other objects access to, and so on. Once the program-
mer has defined all the classes that make an entire program, running
the program means populating the computer with instances of those
classes (the objects), letting them communicate and do whatever they
need to do to interact with inputs (like the user) or generate outputs.
One of the chief advantages of object-oriented programming is that,
if done right, the building blocks not only can be used to build other
structures, but also can be swapped with new versions as long as the
interface remains the same. Our gene network simulation program, In-
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geneue, was written in the object-oriented language Java. It is highly
modular: everything from the user interface to the numerical routines
to the terms in the differential equations is a class definition that, at
runtime, gets instantiated into a bunch of objects as needed. When we
need a new piece of a certain type, we need only make sure that it has
the right interface. If we need to improve, say, the numerical integra-
tion routine, the rest of the program is none the wiser, because we sim-
ply replace the internal methods of the integrator module, without
changing the interface.

Analogously, it is tempting to think of gene networks as building
blocks for the larger programs of development. The segment polarity
network has its own behaviors, states, and inputs (the pair-rule genes)
and outputs (signals like Wingless and Hedgehog, transcription factors
like Sloppy-paired, Gooseberry, and Engrailed), and a lot of “internal”
machinery (the mediators of Wg and Hh signaling) that seem, when we
look at a network diagram, neither input nor output. We like to think
of the evolutionary process co-opting gene networks to use them in
new contexts. Objects, like gene networks, are hierarchical; larger-
scale building blocks contain smaller ones, and so on. But this analogy
is deceptive in several ways: first of all, in the case of gene networks,
the distinction between inputs, outputs, and internal methods is an ar-
tifact of how we choose to think about things, whereas in the case of
software objects, it is a fact of life enforced by syntax.

Probably the most important of all is the issue of data hiding. Good
object-oriented code requires data hiding, meaning that objects cannot
interfere with the methods and data stored by other objects, unless
granted a specific right to do so through defined methods for access.
Nature cannot do data hiding. The closest thing to data hiding in gene
networks is cellular compartmentalization. At the level of the networks
we work with, data hiding is almost a meaningless notion: nothing
whatsoever prevents some other network from fooling around with the
“internal” workings of the neurogenic or segment polarity networks.'!
In fact, this is one of the things about genetic architecture that makes
it so creative a substrate for evolution: nature can rewire it in all sorts
of ways. For example, the neurogenic network may, in some cases,
choose the winning neuroblast because local expression of Wingless,
which just happens to bind to Notch and prevent it from functioning
as a Delta receptor, reduces the amount of Notch available for signal-
ing (see Wesley 1999; Wesley and Saez 2000 for evidence that Wg in-
teracts with N; we do not know of direct evidence that Wg biases
proneural cluster selection by such a mechanism). The closest that
object-oriented code can come to that sort of thing is through the
mechanism of inheritance, in which the programmer can define a sub-
class of a class she wants to modify, and add methods to it.
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Another analogy, which we also find instructive, is to think of gene
networks the same way that biochemists think about protein folding.
Each amino acid has certain properties, such as physical size, and po-
larity. Within each small stretch of peptide chain, those properties de-
termine the tendency of that stretch to adopt a particular secondary
structure. The tertiary structure emerges from the secondary, and the
quaternary from the tertiary. As with gene networks, each of the fun-
damental components is at once a potential input and a potential out-
put (as long as it ends up on the surface of something such that it can
interact with something else, even another domain of the protein, as
when buried in the center). But what we find most appealing about this
analogy is that in both cases, gene networks and protein folding, the
emergence of a coherent higher-level structure subsumes the role of the
lower-level building blocks as units of function or selection. In most
cases we do not think of amino acid residues as units of function un-
less we are talking about how secondary structure arises; increasingly,
we talk about the function of most individual genes only in the context
of how they participate in networks. There are exceptions: the three
crucial residues, positioned just so, in a serine protease, the crucial
phosphorylatable tyrosines in a signaling protein, or those genes like
superoxide dismutase whose function is their own apart from any net-
work. But for most genes, they are not the units of interest once we get
to the network level: it is the whole conspiracy we care about.

Limitations
WE DON'T RENT PIGS
-
—Augustus McCrae’s sign, in Larry McMurtry’s Lonesome Dove

To close we highlight four considerations that limit the usefulness of
the approach we have developed over the past several years. Other is-
sues specific to mathematical formulation are treated elsewhere (Meir
et al. 2002b).

First, the models we have constructed required a wealth of infor-
mation about the detailed circuitry of gene networks that is unlikely to
be available in more than a few paradigm cases for the near future.
This immediately raises certain questions about whether our conclu-
sions should generalize to gene networks in the abstract. Both the
segment polarity and neurogenic networks were (and still are being)
worked out by armies of diligent molecular biologists, over the course
of perhaps as much as a dozen man-millennia for each case, and it is
highly unlikely that most developmental mechanisms will ever receive
quite as much effort. We do not know how typical these mechanisms
really are. R. Strathmann (personal communication) has suggested that



278 GEORGE VON DASSOW AND ELI MEIR

developmental mechanisms and developmental biologists coevolve: the
nice, tidy modular mechanisms are more easily understood, leading to
more fame and money for the biologists who choose to study them, in
turn attracting more talent to the now-paradigmatic cases, and so on.
Thus, we must keep in mind that our findings may document interest-
ing properties only of the particular networks we have worked with,
and we need further work (possibly involving randomly wired network
models) to know whether our conclusions have general import.

A second major limitation is a methodological one: our focus on the
parameter space as the central problem in gene networks imposes both
a computational and conceptual burden. This burden may be so great
as to prevent our methods from being useful for problems much more
complex than the models we have treated here, especially if robustness
turns out #ot to be a general feature of gene networks. While the math-
ematical formulation we use may be applicable to most gene network
problems, it may be impossible to confront most problems using such
a blunt tool as a random search in a wide rectangle in parameter space.
We continue to research more sophisticated strategies to extend our
methods, but from our experience the major challenges appear to be
versatile methods for pattern recognition, rational approaches to de-
fining the “reasonable” ranges of parameters, and developing a com-
prehensive library of formulas to deal with diverse and complex regu-
latory relationships between macromolecules. We expect to solve these
problems as we develop experience with more and more case studies.
Meanwhile, we expect to lessen the computational burden through nu-
merical techniques such as the integration recipe described by Meir
et al. (2002a), and a related fixed-point iteration method developed by
E. Munro (unpublished), but there may be nothing for it in the case of
a truly complex, yet not terribly robust, network.

Third is a tactical limit: we doubt seriously that biologists will be
able to use models like ours to infer network topologies from DNA mi-
croarray (or similar) data on correlated patterns of gene expression.
Even if it becomes feasible to obtain large-scale gene expression data
from embryos, we fear it will be very difficult to deduce the wiring of
such tightly looped networks as we have dealt with from such data sets.
This may not be true in every case; “networks” that consist only of sim-
ple cascades with little feedback and cross-talk will surely be straight-
forward to deduce. But how do we know what we are dealing with a
priori? Imagine if we tried to understand the segment polarity network
from DNA microarray data alone, using models as a deductive aid. Say
we gathered data on wild-type versus engrailed embryos and discov-
ered that the expression of patched depends on en function; of course
it does, because En causes hedgehog to be expressed, and hedgehog’s
product ultimately causes ptc to be transcribed. But En itself represses
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ptc (Hooper and Scott 1989; Hidalgo and Ingham 1990). To be sure,
we might notice this if we also tried to measure responses to en over-
expression, but we would be hard pressed to guess which effects were
indirect and which direct and how each worked for even this simple
fragment of the network. Perhaps one would try to compose a series of
possible topologies that might account for the observed data and then
choose specific experiments to decide among them. Ultimately, the
combinatorics required to use network models to distinguish the pos-
sibilities would be overwhelming, and a sensible biologist would turn
to experiments to figure things out. Thus, we worry that attempts to
use compute-intensive nonlinear models to deduce network topologies
from microarray data are doomed.'?

Finally, the biggest problem is ascribing functions to gene networks.
How, given some conspiracy of genes, are we to know what dynamical
behavior they are “meant” to do in the living organism? For the seg-
ment polarity network, we used the notion, present in the literature for
over a decade, that this network’s job is to maintain parasegmental
boundaries. For the neurogenic network, we used the notion, also pres-
ent in the literature for over a decade, that its task is to mediate lateral
inhibition within a cluster of equipotent cells. These ideas come not
from the great mass of molecular data; they come not from synthe-
sizing those data into mathematical models; they come, prior to the
molecular facts, from careful perturbation experiments and develop-
mental genetics—experiment, not the parts list, reveals the nature of
the mechanism. For most networks, notions of function still end with
statements like “genes X, Y, and Z are necessary for such-and-such an
aspect of the phenotype,” or “gene R is a master control gene for such-
and-such a-process, since activating it ectopically leads to the expres-
sion of X, Y, and Z.” Sensible models demand a shift from assigning
function based on phenotypic effects to assigning function in terms of
intrinsic behavior. We suspect this is a matter of waiting for someone
clever to do the right set of experiments and have that one critical in-
tuition about what the process is all about. Genomics, microarrays,
and all the other avatars of the Age of Ugly Facts hopefully make that
process easier (rather than simply overwhelming it).

Lawrence and Sampedro (1993) opened a critique of early efforts to
concoct a molecular “explanation” of the segment polarity network
with a quote that bears repeating, Banquo’s reaction to Macbeth’s pro-
phetic witches:

The instruments of darkness tell us truths;

Win us with honest trifles, to betray’s

In deepest consequence.—

(Banquo, in William Shakespeare’s Macbeth, act 1, scene 3)
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Whether Lawrence and Sampedro had in mind the molecular biolo-
gists or the theorists in the role of the witches, or both, we do not pre-
sume to guess. The point is that the crucial step is an insight into the
nature of the mechanism and the bounds of the device, and the Parts
Catalog of Life will not tell anyone what all those parts are supposed
to add up ro. In every historical case we can think of, it has been per-
turbation experiments (physical, molecular, or genetic), analysis of
phenotypes, and comparative studies that have brought about that cru-
cial insight, whether the parts list follows or not.
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Notes

1. A little historical perspective is in order when evaluating the role of earlier theo-
retical efforts. Turing, Meinhardt, and their followers were trying to imagine how de-
velopment could work at a time when very little was known about how development
does work. The same is true of other theoretical attempts of the same era. All those ef-
forts, given the history of ideas in developmental biology, ought to be seen as remark-
able successes: they managed to show that developmental pattern formation could be
due to relatively straightforward chemical processes, a conclusion that many classical
embryologists, most famously Hans Driesch, had trouble accepting. Thus, such models
gave direct encouragement to nascent attempts at developmental genetics: if simple
chemical processes could explain development, then there was real reason to hope to dis-
cover the developmental control genes and understand their function. Is it possible thar
Drosophila developmental genetics, and the Age of Ugly Facts, was actually inspired by
the Beautiful Theories? We suspect that what those theories did is convince a critical
mass of people that is was worth looking for the molecular basis of morphogenesis be-
cause it might be a simple thing after all. At the same time we suspect thart if devel-
opmental geneticists of the 1960s and 1970s had stuck with the sentiments of classical
embryologists, they might have given up hope. A passing investigation shows that a sig-
nificant fraction of the embryological literature of the first half of the 20th century reads
like a hymn to vital forces; even the nonvitalists among the embryological community
were unlikely to be committed reductionists (see the excellent volume edited by Scott
Gilbert [Gilbert 1994, and also his recent review [Gilbert eral. 1996]). A relatively small
number of workers, especially Waddington, Weiss, and Needham, appreciated the po-
tential of genetics and biochemistry to reveal mechanistic explanations of complex de-
velopmenral phenomena (Needham 1942; Waddington and Kacser 1957; Weiss 1968).
Gierer and Meinhardr, Wolpert, Slack, Kauffman, and other contributors to theoretical
developmental biology of the 1970s, constitute an important part of the intellectual
weave that connects the morass of classical embryological phenomenology to the equally
bewildering morass of modern molecular developmental generics.
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2. This codependence lasts, literally, for a couple of hours; it is a bridge between the
transient input provided by the pair-rule genes and longer-term mechanisms for stabi-
lizing cell states within the segment. By the end of germ-band extension, en expression
no longer depends on wg (Heemskerk et al. 1991). Perhaps this is because En represses
factors that would otherwise turn En off, and because perhaps, after the initial phase,
there is enough free Arm in the absence of Wg signaling to allow en transcription in the
absence of repressors. Most versions of the segment polarity model, except the simplest,
have the potential for this kind of “En autoregulation,”

3. To our knowledge, only Cadigan and Grossniklaus and colleagues (Cadigan et al.
1994a; Cadigan et al. 1994b; Grossniklaus etal. 1992), who characterized sloppy-paired,
highlighted the need for something to keep en off in the anterior compartment.

4. These remarks apply to the version of the segment polarity network shown in fig-
ure 1. Other versions that incorporate additional components and interactions (von Das-
sow and Odell 2002) alleviate some of the problems described in this scenario. For ex-
ample, versions that include sloppy-paired do not depend so much on Ci providing an
early assist to wg expression, because slp is expressed early enough to fulfill that role.
Nevertheless, the overall description, of a race between mutually exclusive but codepen-
dent cell states, remains valid.

5. The “blind watchmaker™ is Dawkins’s metaphor for the evolutionary process, in
which narural design is the outcome of muration and selection. The metaphor originates
with William Paley’s famous argument for the existence of divinity, since to Paley a com-
plex device like a watch implies a watchmaker.

6. What we call “cooperativity™ may be due to true allosteric cooperativity, or may
not; we use it as a convenient, evocative term for the steepness of nonlinear, sigmoid
dose-response curves.

7. Intermediate steps provide opportunities to damp out oscillations just by sluggish-
ness. Given a chain of responders, if one step responds on a longer time scale than the
step preceding (i.e., a protein with a longer half-life than its mRNA), it will respond
slowly to variations in its inputs, thus converting high-amplitude oscillations to lower-
amplitude oscillations of the same frequency.

8. This passage should also serve as a reminder that “robustness™ is not a unified phe-
nomenon; instead of saying, “this device is robust,” we need to say, “such-and-such a
functional behawpr of this device is robust to such-and-such perrurbations.” The first
statement makes no sense without a context to specify the behavior and perturbation in
question.

9. By this term we mean the tendency for randomly sampled “working” parameter sets
to include values, for a particular parameter, that cluster in some neighborhood, even
when there is no absolute restriction. For example, working parameter sets are about
three times as dense in the “slow” third of the range we allow for the Wg diffusion rate
as they are in the range as a whole.

10. We emphasize that we are taking this as a proxy for an adaptive landscape. We
do not mean to conflate the two. The adaptive landscape refers to a fitness function
on a manifold whose axes are either phenotypic traits or genotypic characteristics. We
haven’t a clue how to relate the dynamical behavior of a gene network directly to sur-
vival and reproduction; all we can do is characterize how the dynamics of the model
match observed gene expression patterns, which are but a manifestation of some ma-
chinery that creates the phenotype, whose fitness is determined by the ecology the or-
ganism finds itself in. For the sake of the metaphor we are pretending that the network
has to do more or less what it does in a wild-type animal, and that the better it mimics
the wild-type gene expression regime, the higher its fitness.

11. But we note that at higher levels of organization, there are barriers that to some
extent isolate different developmental modules from one another. For example, the spa-
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tial layout and morphogenesis of embryos can either prevent or enforce cross talk be-
tween different morphogenetic fields.

12. A more suitable approach to this challenge might be the neural-network-inspired
method developed by Reinitz and colleagues, in which the weights governing all possible
connections within the network are tuned to achieve the best possible fit to real data
(Reinitz et al. 1998; Reinitz and Sharp 1995).
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