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Robustness, Flexibility, and the Role of Lateral
Inhibition in the Neurogenic Network

many phyla. Many of these networks have acquired
novel functions in different organs and species. Why is
that? Is there something special about each of these
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University of Washington networks that causes natural selection to preserve them

through deep time and coopt them to perform new func-620 University Road
Friday Harbor, Washington 98250 tions? Or is it simply that evolution doesn’t fix what first

evolved if it isn’t broken?2 Department of Zoology
University of Washington Only recently can we begin asking these network-

level questions. A tremendous and ongoing experimen-24 Kincaid Hall
Seattle, Washington 98195 tal effort has generated an unprecedented catalog of

the components and connections of many networks,
while advances in computers give us the power to ex-
plore complex systems in ways unimaginable a decadeSummary
ago. Recently, we found that a model of the segment
polarity network in Drosophila embryos exhibits two veryBackground: Many gene networks used by developing
interesting properties, robustness to changes in kineticorganisms have been conserved over long periods of
parameters and robustness to changes in its initial con-evolutionary time. Why is that? We showed previously
ditions (i.e., due to prior expression patterns of upstreamthat a model of the segment polarity network in Drosoph-
genes) [1]. This example is tantalizing, but it takes sev-ila is robust to parameter variation and is likely to act
eral such case studies to support general conclusions.as a semiautonomous patterning module. Is this true of
We therefore investigate in this paper whether a secondother networks as well?
well-studied network, the neurogenic and proneuralResults: We present a model of the core neurogenic
genes (hereafter simply referred to as “the neurogenicnetwork in Drosophila. Our model exhibits at least three
network”), has similar properties.related pattern-resolving behaviors that the real neuro-

We use the “canonical” structure of this network asgenic network accomplishes during embryogenesis in
it operates during Drosophila development, especiallyDrosophila. Furthermore, we find that it exhibits these
in determining neuroblasts (NB) in embryos and sensorybehaviors across a wide range of parameter values, with
organ precursor (SOP) cells in imaginal disks (reviewedmost of its parameters able to vary more than an order
in [2]). Components of this network are used in a wideof magnitude while it still successfully forms our test
range of patterning processes, from vertebrate retinalpatterns. With a single set of parameters, different initial
development [3] to nematode anchor cell specificationconditions (prepatterns) can select between different
[4], with apparently similar interactions among the corebehaviors in the network’s repertoire. We introduce two
genes. Neurogenesis is often cited as a classic case ofnew measures for quantifying network robustness that
lateral inhibition [5]. This hypothesis postulates that amimic recombination and allelic divergence and use
small group of neighboring cells all start out competentthese to reveal the shape of the domain in the parameter
to assume a particular fate. A stochastic fluctuation orspace in which the model functions. We show that lateral
external cue slightly favors one cell over the others.inhibition yields robustness to changes in prepatterns
The favored cell then suppresses (laterally inhibits) itsand suggest a reconciliation of two divergent sets of
neighbors to keep them from also assuming that fate.experimental results. Finally, we show that, for this

Here, we first ask whether the neurogenic network,model, robustness confers functional flexibility.
as the literature currently portrays it, can perform lateralConclusions: The neurogenic network is robust to
inhibition. Simple models encapsulating the barest es-changes in parameter values, which gives it the flexibility
sential facts of the neurogenic network (the Dl/N interac-to make new patterns. Our model also offers a possible
tion) succeed under certain conditions in differentiatingresolution of a debate on the role of lateral inhibition in
cells with initially similar levels of Dl and N (e.g., [6]).cell fate specification.
The real pathway between Notch activation and Delta
expression, however, has layers of feedback and modu-

Introduction lation, including switch and homeostat-like subcircuits.
These ought to (and do) make it more difficult to accom-

In this paper, we use a computer model to explore the plish lateral inhibition. Thus, it is a nontrivial question
properties of the neurogenic network, originally charac- to ask under what conditions, if any, the neurogenic
terized in Drosophila melanogaster. This is but one ex- network can accomplish lateral inhibition. And, if it can,
ample of the many networks of cross-regulatory genes how do we explain the inclusion of design features that
at work in complex organisms. Other familiar examples seem to work against the apparent biological role of the
include the networks of segment polarity genes, of cell circuit? This is where we begin our exploration.
cycle genes, of circadian clock genes, and so on. Each
of these seems to have remained more or less intact Abstracting the Neurogenic Network and the Three
through long periods of evolutionary time and across Tasks It Performs

We focused our investigations of the neurogenic net-
work on the genes that select neural cells in Drosophila3 Correspondence: meir@beakerware.org
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Figure 1. Models of the Neurogenic Network
Used in Neural Specification in D. melano-
gaster

A graphical summary of the experimental lit-
erature on neural specification, which our
model represents mathematically. Ovals rep-
resent mRNAs, rectangles represent pro-
teins, and hexagons represent protein com-
plexes. Diamonds containing plus signs
indicate constitutive expression of N and DA
where we have not diagrammed, but have
modeled, the intermediate mRNA concentra-
tions. Though not diagrammed, all gene prod-
ucts decay with parameter-specified decay
rates, except SU(H), which we modeled as
cycling between two states with no produc-
tion or decay. Our augmented network model
includes the black, green, and red connec-
tions. Our standard network model includes

the black and green connections. Our reduced network model includes the black and blue connections such that SU(H)/N directly inhibits
production of ac and sc with all E(SPL) products absent in that version. We adopt the following convention to distinguish between reality and
model: as in the Drosophila literature, “ac” and “Ac” refer, respectively, to the achaete gene and its protein product; whereas, in referring to
the model, “ac” and “AC” refer to the nodes in our model that represent achaete mRNA and protein.

embryos and imaginal disks. Figure 1 shows our sum- mented network (which adds the red connections) indi-
cate that these may indeed be important. Our reducedmary of the core genes, their products, and their interac-

tions. In crafting Figure 1, we approached the model- network eliminates intracellular negative feedback from
AC and/or SC to suppress ac and sc transcription (bluebuilding process as a biochemist approaches in vitro

reconstitution; by adding to the system piece by piece, connections replacing red and green connections and
their E(spl) hub). Such a simplified network could havewe hope to figure out how each design feature contrib-

utes to the function of the essential core network. We functioned in a precursor to the Drosophila network
since the similar process of anchor cell specification inrationalize our choice of this diagram in the Supplemen-

tary Material available with this article online, with a the worm Caenorhabditis elegans appears to take place
without E(spl)-like genes or function (X. Karp and I.synopsis as follows (Below, “ac” and “Ac” refer to the

real achaete gene and its protein product, whereas “ac” Greenwald, personal communication) (though the C. ele-
gans version is likely derived).and “AC” refer to corresponding nodes in the model):

Delta (Dl) is a ligand for the receptor Notch (N). When We explored three spatial patterning functions with
each network (Figure 2). The first was lateral inhibition,Dl activates N, a cleaved-off cytoplasmic piece of N

binds to the transcription factor Suppressor of Hairless leading to a separation in states between two neigh-
boring competent cells, as in a related network in C.(Su(H)), and that heterodimer activates Enhancer of split

(E(spl)) complex genes. The proneural genes achaete elegans [4]. We started two cells with different concen-
trations of ac and sc products and tested whether, within(ac) and scute (sc) encode transcription factors that ac-

tually specify neural fate. Both Ac and Sc are autoacti- 300 min, the initially higher cell achieved a high concen-
tration while the other turned off AC (see the legend ofvating and cross-activating: they promote their own, and

each others’, transcription. Thus, the proneural genes Figure 2). The second test asked the central cell in a
group of seven to “win”, inspired by SOP-forming clus-constitute a bistable switch at the heart of the neuro-

genic network. They also activate transcription of E(spl) ters in an epithelial sheet [7]. The third test asked a
double line of cells to refine to a single line, very roughlyand Dl. E(spl) in turn represses transcription of ac and

sc. Thus, the loop works as follows: something activates mimicking the pattern seen at the margin of wing imagi-
nal disk [8]. We made and ran all models using ourac and/or sc in the neural-competent cluster. They

upregulate Dl, whose product activates N in neighboring Ingeneue software [1, 9], a general-purpose program for
modeling genetic networks. These tasks are intendedcells, which, through Su(H), activates E(spl). E(spl) re-

presses ac and sc in those neighboring cells. To achieve to be stereotypes that abstract many biological phe-
nomena rather than accurate mimics of any one case,a neural fate, a cell must upregulate ac and sc enough

that their autoactivation overwhelms E(spl)-mediated re- and we designed them to insure that the network must
use lateral inhibition in order to succeed. All files neededpression due to neighboring cells signaling through N.

We constructed three different models of the network to recreate our results (as well as the Supplementary
Material accompanying this paper) are available atin Figure 1, which we call “augmented”, “standard”, and

“reduced”. The standard network includes all compo- www.ingeneue.org.
nents and interactions shown in Figure 1, except for
cis-negative regulation of N activity by Dl and E(spl) All Three Work!

Our first question was whether the three versions ofautorepression (Figure 1 without red or blue connec-
tions). Experimental evidence for each of the latter inter- the network in Figure 1 can perform lateral inhibition. A

network model consists not only of its topology (Figureactions exists (see the Supplementary Material), but the
literature has not given them much attention. Neither 1), but also of dozens of parameters specifying the

strength, rate, and functional form of each connection.did we initially, but our results below regarding the aug-
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so we instantiated networks by sampling values ran-
domly from within broad but biologically realistic ranges
[1, 9]. Any set of randomly chosen parameter values that
allows the model to pass some functional test we call
a “solution”.

All three models exhibited lateral inhibition in the 2-cell
test, but the standard model had a much lower fre-
quency of solutions than the augmented model, while
the reduced model had the highest solution frequency
of the three (Table 1). By this naive measure, the reduced
model seems the most robust of the three. However if
p is the probability of picking a “good” value for each
parameter independently, we expect that the solution
frequency for models with equivalent robustness per
parameter would scale as p^n, where n is the number
of parameters. p is highest for the augmented model
(Table 1). That measure makes the augmented network
most robust. All three networks could also mediate lat-
eral inhibition between a central neural cell and six sur-
rounding cells (7-cell pattern, Figure 2), with similar solu-
tion frequencies as for the 2-cell pattern (Table 1). As
with the segment polarity network [9], cooperativity (Hill
coefficients � 1) in transcriptional activation and repres-
sion is essential for the network to function (Table 1).
In many neurogenic tissues, when the winning cell is
removed early in the patterning process, a cell originally
destined for a nonneural fate replaces it. We took param-
eter sets from our 2-cell test in the augmented network
and removed the presumptive winner at a point at which
concentrations of proneural genes in the loser were be-
ginning to drop toward zero. We found parameters in
which the presumptive loser could recover at that pointFigure 2. 2-Cell, 7-Cell, and Line Patterns Used to Test Our Models
and assume a neural fate. We also found the same resultEach test starts some cells with twice the concentrations of the
using a 3-cell test (the largest number in which all cellsmRNA and protein of both proneural genes as its neighbors (brighter

colors show higher concentrations). We surround the field of compe- can still touch in our hexagonal grid).
tent cells with other cells (not drawn) containing no initial ac/sc There are two differences between our standard and
products; hence, no ac/sc ever. All other model concentrations start augmented models, E(SPL) autoinhibition and DL inhibi-
either off (black) or at a uniform high level (blue) across all cells. We

tion of N activation (red lines in Figure 1). Both are sup-run the model for 300 min and measure whether the initially higher
ported by experiments, and both contribute to improvingcell(s) achieve(s) a high concentration of AC (greater than 20% of
the solution frequency (Table 1), but E(SPL) autoinhibi-the highest steady-state concentration possible) and whether the

initially lower cell(s) turn off (below 2% of maximum steady state). tion contributes more than cis-inhibition of N by DL.
This could happen without lateral inhibition if there was a threshold We hypothesized that the reduced model has a higher
of initial ac and sc concentrations above which the ac/sc switch solution frequency than the other two because it lacks
would turn on and below which it would turn off in isolated cells.

activation of e(spl) by AC and SC (which implements aTo ensure that the separation is due to lateral inhibition rather than
homeostat; see the Discussion). Indeed, eliminating ACmere thresholding, we always run a second test with the same 2-fold
and SC activation of e(spl) in the augmented modelinitial difference between cells, but in which the lower-concentration

cells in the second test have the same initial concentrations of ac raised the frequency of solutions to almost the same as
and sc products as the higher cell in the first test (the one exception that of the reduced model (Table 1).
was in testing the effect of noise in initial conditions in which we To see whether the network is robust to noise in initial
did not use a second test). We call a model with its parameter values

conditions, we took solutions from each model anda “solution” only if both pairs achieve the correct pattern at 300 min
asked whether they could pass the 7-cell test from initialand, additionally, if both pairs maintain that state for 1000 min. We
conditions as in Figure 2, but with Gaussian noise addedconducted identical tests using much smaller initial concentration

differences (down to 1%) and found qualitatively similar results, to the initial concentrations of ac, AC, sc, and SC in
albeit with commensurately lower solution frequencies. each of the focal cells. For all three networks, we found

solutions that were robust to this noise (Table 2). Simi-
larly, both the augmented and reduced networks can

The reduced, standard, and augmented versions of the select a single winner with very little initial bias in the
network have 53, 63, and 69 such parameters, respec- prepattern by amplifying small amounts of noise (Table
tively. Asking whether the network can do lateral inhibi- 2). Solutions for the reduced network were more likely
tion amounts to asking whether there exist values for to tolerate noise than solutions for the others. Since all
these parameters that enable the network to pass any networks can pass our tests, the results in this and
of the three tests in Figure 2. We have practically no idea the previous paragraph provide no evidence for which

network is more likely to be an accurate representationwhat appropriate values for these parameters would be,
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Table 1. Robustness of Neurogenic Network Models to Parameter Variation

Success Rate for Random Recombination
Network/Task; (Number of Free Parameters) Parameters, f; (f∧1/n) Success

Augmented/2-cell; (69) 1/3,800; (0.89) 5%
Augmented/7-cell; (69) 1/8,000; (0.88) 5%
Standard/2-cell; (63) 1/113,000; (0.83) 1%
Standard/7-cell; (63) 1/153,000; (0.83) not done
Reduced/2-cell; (53) 1/570; (0.89) 9%
Reduced/7-cell; (53) 1/2,900; (0.86) 4%
Augmented/2-cell; restricted range (69) 1/4; (0.98) 58%
Augmented/7-cell; restricted range (69) 1/34; (0.95) 45%

Variations on Augmented Network

Augmented without DL cis-inhibition of N (67) 1/7,200; (0.88)
Augmented without E(SPL) autoinhibition (67) 1/43,000; (0.86)
Augmented without AC, SC activation of e(spl) (65) 1/600; (0.91)
Augmented with no cooperativity in transcriptional 0/210,000

activation/repression (54)
Augmented with constant DL input in all cells (71) 1/157,000 (0.84)

The second column shows the proportion of randomly selected parameter sets that successfully formed the test pattern. Success rates are
based on finding hundreds (reduced and augmented networks) or dozens (standard network) of successful parameter sets. The nth root of
this success rate is in parentheses, where n is the number of free parameters in the model. Note that small differences in the nth root lead to
large differences in solution frequency because of the high number of parameters. The third column shows the percentage of successful
offspring from 10,000 recombinations of 100–200 randomly found successful parameter sets (standard 2-cell used only 16 parental sets).

of what exists in the fly. But they do point to the relative network is a lateral inhibition module, whereas the seg-
ment polarity network is a boundary-stabilizing module.importance of the different links in conferring robustness

on the network and raise a puzzle about the role of E(spl)
to which we return below. Parameters Are Not Restricted in Their Values

To summarize, realistic dynamical models of the neu- Figure 3 (also see the Supplementary Material) shows
rogenic network can, in fact, carry out classic lateral histograms of the values of selected parameters from all
inhibition over an extraordinarily large portion of its pa- solutions we found while randomly searching parameter
rameter space, even when, unlike earlier models (e.g., space using the 2-cell test on the augmented neurogenic
[6]), we include the intermediate players between N acti- network. Although some parameters tend to cluster in
vation and Dl expression. As we showed previously for
the segment polarity network, these results predict that
the lateral inhibition function of the core neurogenic
network is very robust to changes in parameters; this

Table 2. Robustness of Neurogenic Network Models to Variation
in Initial Conditions, Prepattern

Number of Solutions
Network Found Robust to Noise

Augmented with prepattern 5/40
Standard with prepattern 1/10
Reduced with prepattern 12/40
Augmented without prepattern 1/40
Reduced without prepattern 4/40

The first three rows show the number of solutions to each network
that formed the correct final pattern from at least 75% of noisy 7-cell Figure 3. Selected Histograms of Successful Parameter Values
prepatterns. We tested 100 prepatterns against 40 solutions per from Solutions to the Augmented Neurogenic Network Using the
model (only 10 for the standard model). Each prepattern was as 2-Cell Lateral Inhibition Test
described in Figure 2, but the initial ac and sc product concentra-

Each histogram shows the values of just one of the 69 parameterstions in the focal cells were randomly perturbed by a value drawn
in the model. Hs are half-lives, �s are half-maximal activations, andfrom a Gaussian distribution with a standard deviation equal to 40%
�s are cooperativity (Hill) coefficients. The horizontal axes span theof the initial difference between high and low cells. The last two
range within which we sample each parameter (ranges: H � 1–1000rows show results for the same 40 solutions per model, but starting
min; � � 0.001–1 proportion of max concentration; � � 1–10). Wefrom initial concentrations drawn from a Gaussian distribution with
sample Hs and �s on a log scale. We selected these histograms tothe same mean for all cells and a 20% standard deviation (we used
show the variety of clustering among different parameters (see theonly 50 different prepatterns here). In both cases, we ensured that
full suite in the Supplementary Material). We found the best rangethe middle cell had a higher initial concentration of each product
for each parameter by choosing values from the smallest subrangethan all surrounding cells (thus, there is still effectively a weak pre-
covering at least an order of magnitude and containing 50% of thepattern in the second case), but the difference could be arbitrarily
values used in solutions. We also forced all transcriptional activationsmall.
and repression in these sets to be at least slightly cooperative.
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part of their range, there do not appear to be any abso- enous Dl with ubiquitously expressed Dl and found a
fairly normal pattern of NBs in embryos, although 20%lute restrictions. That is, solutions permeate the entire

huge box within which we randomly chose values (with of clusters formed an extra NB.
Seugnet et al.’s experiments are so compelling thatone trivial exception of AC half-life, explained in the

Supplementary Material). This apparent lack of restric- we think it useful to explore the conflict between the
two apparently opposite views just outlined. Many oftions could mask compensation between pairs or

groups of parameters (e.g., parameter A could be high the solutions in our 7-cell test exhibited similar levels
of dl (mRNA) and DL (protein) in all seven cells overas long as parameter B was low and vice versa). We

tested for but found no strong pair-wise cross-correla- most of their run, but all had at least some period of
time in which dl concentration was at least twice astions, so any compensation must be relatively weak or,

more likely, involve more than two parameters. high, and often much higher, in the presumptive neural
cell than its neighbors. If lateral inhibition and proneural
regulation of Dl are indeed involved in neural specifica-The Augmented Network Succeeds Almost
tion, our models indicate that, for at least some briefEverywhere Inside at Least One Large
period of time, Dl or some related protein (such as differ-Neighborhood in Parameter Space
ent isoforms of N [14]) must have higher concentrationsAlthough only a single neurogenic network parameter
in the winner. Dl dynamics are complex [12] and difficultshowed absolute restrictions in its range, many parame-
to measure accurately due to the concentration of bothters tended to cluster in a subset of the full range. Using
Dl protein and mRNA in membranes ([11, 12]; E.M. and D.the augmented network, we restricted each parameter
Lehman, unpublished data), so it is still unclear whetherto the best order-of-magnitude subrange with respect
there are in fact heterogeneous concentrations withinto the 2-cell solutions (see Figure 3 legend). We then
proneural clusters. But if differences in Dl levels areconducted another random parameter search inside
important to the mechanism, how can the process stillthese new restricted ranges. The success rate increased
succeed in most cases despite constitutive Dl expres-almost 1,000-fold inside these (still very broad) ranges
sion [13]?(Table 1). Using the same restricted range found with

We added a constitutive input (with tunable parame-the 2-cell pattern, the success rate with the 7-cell test
ters determining that input rate) to the dl promoter inalso increased more than 100-fold. We found a similar
our augmented model to produce the broad distributionresult with our model of the segment polarity network
of DL observed in early embryos. We found solutions in(G.v.D., unpublished data). Thus, both the neurogenic
which this model still passed our 7-cell test (Table 1),and segment polarity networks contain at least one large
in one of which the final DL concentrations differed byneighborhood of parameter space (10-fold-wide in all
less than 40% between the winner and all other cells.directions) in which solutions are very common. Further-
When we removed the upregulation of dl by AC andmore, this neighborhood is shared between at least two
SC in one of these solutions, leaving the constitutiveof the patterns the neurogenic network makes.
expression, the network passed the test for lower initial
AC concentrations, but all cells became neuronal with

The Neurogenic Network Can Act as a General higher initial AC concentrations. This suggests a resolu-
Inhibitor that Outside Activators Must Overcome tion of conflicting experimental results. In cases in which
One explanation of proneural cluster function invokes the prepattern is well tuned, the core neurogenic net-
the classic Delta/Notch lateral inhibition switch. Experi- work, without lateral inhibition, can select a single winner
ments in grasshopper embryos [5], wherein ablation of through cell autonomous processes. But if there are
the presumptive NB results in its replacement by another small changes in the prepattern, or developmental
cell in the cluster, supports this explanation. A defining noise, lateral inhibition enables the network to continue
feature of this switch is that Dl is expressed at high to function where it would otherwise fail.
concentrations only in proneural cells (as indeed occurs
in wing discs [10]) and is downregulated in cells that The Model Neurogenic Network with a Single
lose ac/sc expression. In all the models above, DL is Set of Parameter Values Can Form Several
expressed only in the proneural cluster, consistent with Different Patterns
the wing disc paradigm, and remains expressed forever We might expect that the neurogenic network, or some
only in the winner. In some solutions, however, DL ex- ancestral version, evolved originally to perform just one
pression attenuates very slowly, persisting in all cells of patterning behavior. Over time, the evolutionary process
the cluster long after only the winner expresses AC/SC. coopted it to perform novel functions. This path would
This latter behavior is more consistent with experimental seem easier to travel if the network with a single set of
reports of Dl expression in embryos: Dl concentrations parameter values could pass each of our tests simply
differ little among the NB, its neighbors in the cluster, by starting from different prepatterns (initial conditions).
and cells outside the cluster [11], and Dl mRNA concen- We found this to be true for the augmented network.
trations begin to differ only after NB selection is com- Many of the 2-cell solutions also enable the network to
plete [12]. These observations support a different view pass the 7-cell or line tests; a large fraction could form all
of neural specification in which neurogenic genes inhibit three patterns (Table 3). Many 7-cell solutions similarly
neural fate equally in all cells; prepatterning genes over- enabled 2-cell, line, or all three patterns. This reveals a
come this general inhibition only in the winning cell, with fundamental relationship between robustness and
lateral inhibition playing no strong role (reviewed in [2]). evolvability (see Figure 4 legend), as anticipated by

Kirschner and Gerhart [15].Supporting this view, Seugnet et al. [13] replaced endog-
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bustness by recombining randomly found solutions toTable 3. Proportion of Solutions to One Test that Can Pass Other
Tests in the Augmented Network create offspring parameter sets. Our “recombination”

means randomly selecting each offspring parameterOriginal Pattern 2-Cell 7-Cell Line All Three
value from one or the other of two randomly chosen

2-Cell 1.0 0.25 0.14 0.12 successful parental parameter sets (Figure S3). Success
7-Cell 0.8 1.0 0.33 0.25

of offspring sets at passing our tests generally correlates
with the frequencies of finding solutions through a ran-
dom search of parameter space (Table 1). As with ran-

The Shape of the “Working Region” dom sampling, the recombination success rate was
of Parameter Space much higher among solutions found within the restricted
Clearly, simple but realistic representations of the core parameter ranges. These results confirm the robustness
neurogenic network can accomplish classic lateral inhi- of the networks and hint that the restricted parameter
bition. Given the large number of parameters in each ranges contain a region in which almost all recombina-
model, random sampling within a huge box in parameter tions would be successful.
space produces solutions with extraordinarily high fre- To test that latter prediction, we devised another mea-
quency, indicating that the neurogenic network is robust sure of robustness, which we term “mutational expan-
to changes in parameters. From a biological perspec- sion”, by adding an evolutionary component on top of
tive, however, this statistical measure is a crude charac- recombination. We imagine that a single founder solu-
terization of parameter space. We could get such results tion set of parameters expands by simulated mutations
from a single broad basin of good parameters, a skinny into a population of individuals who all recombine with
crevasse that snakes around parameter space, many each other randomly to produce successive genera-
small, disconnected neighborhoods, or anything in be- tions. As more generations go by, more mutations arise,
tween. These differences would have important biologi- and the spread of values for each parameter in the popu-
cal consequences, both for robustness of the network as lation will grow larger. We want to find out how large a
it exists today and for the ability of evolution to navigate spread in parameter values the population can tolerate
parameter space. We explored these shapes in three before the within-population recombination success
ways. We first used a traditional sensitivity analysis to rate drops too low (below 90% mating success) (see
show that most parameters can vary by over an order the Supplementary Material).
of magnitude around the typical solution (see the Sup- We tried this procedure on approximately 25 randomly
plementary Material). We now propose two new mea- selected “founder” parameter sets found within the full
sures to quantify genetic network robustness in more parameter ranges (“widely selected sets”) and 25 found
biologically meaningful terms and reveal the shape of within the restricted parameter ranges (“narrowly se-
the functional territory. lected sets”) (cartooned in Figure 5A). After completing

In nature, different solutions are blended through re- the mutational expansion procedure on each, we mea-
combination during sexual reproduction. We tested ro- sured the average ratio between the highest and lowest

value for each parameter within the population. This
measure will be highest when the volume in parameter
space covered by the population is wide in all dimen-
sions (along all parameter axes). Using this measure,
we found that parameter sets from the full parameter
ranges generally expanded into populations that
spanned much smaller volumes than those found in the
restricted range (Figures 5B and 5C; cartooned in Figure
5D). The largest volumes spanned over an order of mag-
nitude on average for each parameter, a truly enormous
range considering the difficulty of the test.

How do these populations (parameter space volumes)
relate to each other? To answer this, we recombined
parameter sets from each population with those from
the other populations. The mating success between nar-
rowly selected populations often approached the mat-
ing success within a single population (Figure 5D cap-
tion). The mating success between a narrowly selectedFigure 4. Robustness to Parameter Variation Confers Evolutionary
population and the widely selected populations wasFlexibility in the Pattern Produced by the Network
quite a bit lower, and the success among widely selectedThe cartoon shows a hypothetical cross-section through the param-
populations was even lower, though still higher than theeter space with outlines for regions where the network can form

different patterns. The regions overlap approximately as shown. If success rate for completely random parameter selec-
the neurogenic network was originally tuned to make any one of the tions. This leads us to a new view of the functional
three patterns, evolution could modify parameter values, wandering territory for this network in parameter space; it has the
through neighborhoods of working territory, until the network could shape of a high-dimensional octopus (Figure 5E), with
make the other patterns as well. This is only possible because of

at least one large central area (the body) in which solu-the network’s robustness to parameter variation; if the pools were
tions are very common and long tentacles of good solu-too small, they would not overlap, and natural selection would have

to leap from one function to another across nonfunctional zones. tions snaking away from this area within which solutions
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are also common, but these are separated by regions
in which solutions are rare or nonexistent.

Discussion

The Neurogenic Network’s Robustness Leads
to Evolutionary Flexibility
Most efforts so far to explore realistic models of gene
networks show robustness to parameter variation, e.g.,
[1, 16–18]. The core neurogenic network also exhibits
enormous robustness to variation in parameters as well
as robustness to noise in initial conditions. Furthermore,
the neurogenic network model reveals a fundamental
relationship between robustness and evolvability. We
tested the model’s ability to perform three distinct func-
tions. Some parameter sets enable one or another func-
tion; however, the existence of parameter sets enabling
all three functions means that once the network is tuned
to do one of those tasks, say, the 2-cell choice task,
the parameters are free to vary, only because of the
network’s robustness, into the subspace in which the
model could also make the 7-cell and line patterns. This
would not be the case if the network was not robust for
all three functions; thus, in this case, robustness confers
flexibility (Figure 4).

We don’t claim that this model accounts for every
context in which these genes are deployed by develop-
ing embryos. In particular, we don’t believe the model
can account for more complex pattern-formation tasks,
such as the production of regularly spaced bristles, in
which mutations in components of this network change
the spacing. To produce robust longer-range patterns,
we think this lateral inhibition model must be joined with
either a mechanism for long-range cell-cell communica-
tion (such as Dl diffusion [19, 20] or, as suggested by
an anonymous reviewer, long-range filopodial contacts)
and/or a mechanism by which N/Dl signaling could feed
back on a spatially varying prepattern. The model we
present here seeks to reconstitute the canonical lateral
inhibition phenomenon from the known facts of the cou-
pling between N/Dl signaling and the proneural genes;
something is still missing from our picture, since the
known facts seem to us inadequate to explain larger-
scale patterning processes.

Constitutive Dl Production Combined with Weak
Lateral Inhibition Can Resolve the Controversy
about the Role of Lateral Inhibition in Neurogenesis
As discussed above, the experimental literature includes
both support for, and refutation of, an important role for
lateral inhibition in neural determination. Our results can
account for both sets of experiments. If the prepattern

indicate that most parameter sets from the restricted range occupy
Figure 5. The Parameter Space Is Shaped Like an Octopus with larger solution spaces than those from the full range (cartooned in
Multiple Possible Network Functions Overlapping [D]). The text under (D) shows the average mating success between
(A–D) A cartoon of randomly selected solutions from the full (plus) parameter sets found within the full range (plus � plus), within the
and restricted (bullet) parameter regions. After mutational expan- restricted range (bullet � bullet), and between one parameter set
sion, each of these grows into a population of parameter sets con- from the restricted range with parameter sets found in the full range
fined within a local solution volume (shaded domains in [D]). The (plus � bullet). This leads us to view the solution space as resembling
ratio of max/min values for each parameter across all the sets in a an octopus, with the solutions found in the full parameter space out
population have average values shown in (B) and (C). These ratios in the arms and a large central area around the restricted range.
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that initiates neuroblast selection is well tuned, the pre- feedback to increase stability might still apply. Perhaps
the E(spl) homeostat reduces the network’s sensitivitypattern plus a constant level of inhibition could select

the winner, absent lateral inhibition. But lateral inhibition to developmental noise such as stochastic changes in
transcription or translation rates, in the prepattern, orbuffers the patterning against perturbations in the initial

prepatterning (e.g., due to genetic or environmental vari- in the concentrations of modulators such as Da and
Emc.ation, or “developmental noise”). Seugnet and col-

leagues [13] reported that, with only constant produc- A related design benefit might be that the E(spl) ho-
meostat prevents the network from switching individualtion of Dl, 80% of proneural clusters developed normally,

but 20% produced an extra NB. We interpret these ex- cells on or off before the prepattern has a chance to
decree the winner. A simple bistable switch consistingperiments to say that the prepattern is well tuned in

most proneural clusters, but in 20%, either a poorly of ac and sc alone could not help but be thrown in one
direction or the other by noise (as apparently takes placetuned prepattern or noise causes errors in the absence

of lateral inhibition. This is a testable idea. One could in C. elegans anchor cell specification). Adding E(spl)
leads to a new, neither-on-nor-off steady state, whichremove lateral inhibition as Seugnet et al. [13] did. We

would then predict that the embryo would be much more could enable the proneural switch to procrastinate until
some extrinsic cue forces the system to choose one orsensitive to hyper- and hypomorphs in prepatterning

genes such as extramachrochaete and hairy. We would the other switched state.
also predict that they would be more sensitive to muta-

Conclusionstions in genes within the network itself, such as missing
Our results highlight several evolutionarily interestingor extra copies of Dl or N. We make the latter prediction
properties of genetic networks. Like several other recentbecause those mutations should change the threshold
simulated networks, this model network, inspired by anto which the prepattern is tuned. In the absence of lateral
evolved design, exhibits robustness that would be theinhibition, a prepattern that was well tuned to the former
envy of any human designer. Perhaps this is a genericthreshold could not also be well tuned to the new
feature of genetic organization, but perhaps it reflects athreshold.
coevolution between evolved networks, biologists, and
theorists: modular, robust networks are the easiest to

The E(spl) Homeostat Might Increase the Network’s get at experimentally. Thus, they are the best under-
Robustness to Noise, as in Human-Engineered Circuits stood and are the best fodder for models. In any case,
From our results above and others not described here, the model discussed here shows that this robustness
we deduce that E(spl) greatly reduces the percentage can lead to an evolutionary flexibility by which a network
of random parameter sets that enable lateral inhibition. originally tuned to one function can mutate, without los-

ing that original function, toward the ability to performWe believe this is because E(spl) acts as a homeostat.
additional functions. Furthermore, were evolution to dis-As the expression level of the proneural genes (ac and
cover a relatively nonrobust solution (at the tip of ansc) rise, their products activate E(spl). E(spl) then down-
arm in Figure 5E), the network could migrate down theregulates the proneural genes. As with the thermostat
octopus arm to more robust regions. Conversely, thein a house, this negative feedback loop tends to keep
network could migrate back up one of these arms ifthe proneural genes at an intermediate level rather than
the characteristics of the central region were no longerallowing them to switch to either a high or low state.
selected for. This could lead to reproductive isolation,Both E(spl) autoinhibition, and to a lesser extent cis-Dl
the precondition for speciation.inhibition of N activation, help overcome this homeostat.

On the face of it, this seems a strange design. The ac/sc
Supplementary Materialnetwork itself is a bistable switch that tends to go in the
In the Supplementary Material, we explain how we derived the model

direction it is pushed and remain there. The switch and network in Figure 1 from relevant experimental facts about the real
homeostat mechanisms are exact opposites. We found neurogenic/proneural network. Supplementary Material including
that removing the homeostat (the reduced model) makes the mathematical formulation of the model, further explanation of

the algorithms we used to explore parameter space, a comparisonit easier to find parameter sets that pass our tests (which
of the neurogenic network with our segment polarity model usingall involve throwing the switch). Why incorporate coun-
these methods, and a complete presentation of the results exempli-teracting mechanisms in the same circuit?
fied in Figure 3 is available at http://images.cellpress.com/supmat/

It is, of course, possible that this is simply a vestige supmatin.htm.
of the network’s evolutionary history, with no design
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