
Ingeneue tutorial 1, page 1

Ingeneue Tutorial: The Segment Polarity Model

This tutorial is intended to get you started with our segment polarity network model. We used
this network as our test case to develop Ingeneue. Before doing this tutorial, you will want to
look at the paper we published on this model, as the tutorial essentially tells you how to
recreate many of our results in that paper:

G. von Dassow, E. Meir, E. Munro, G. Odell. (2000). The segment polarity network is a robust
developmental module. Nature 406: 188-92

The tutorial takes you through the following steps:
• loading a network file and running the model defined in that file
• loading a file with pre-found sets of parameters under which the network will produce a

desired behavior
• sampling random parameter sets
• changing parameter values by hand
• changing initial conditions

For many of these steps there are more complicated and flexible ways of doing the same thing
which you may want to read about in the full manual after finishing the tutorial. The next
tutorial after this one shows you how to construct your own network files.

Disclaimer: While we expect to make Ingeneue a polished program with a nice interface in the
future, up until now it was just designed to be used by its developers. Ingeneue is thus a
finicky program, and we have just gotten good at avoiding its quirks. We frankly have been
more concerned with getting the core algorithms right than with making a spiffy user
interface. Moreover, Java is not yet as mature as it could be. So all in all, please be forgiving
and expect to quit and restart the program several times. We are happy to hear about bugs
and other frustrations and we will try to fix problems you tell us about.

Starting up and running a model

1) Look at the ReadMe file that came when you downloaded the program and install the
program on your machine as specified in that file. In particular, remember that you
need to have the swing libraries installed, as explained in the ReadMe file.

2) Run Ingeneue by:

• (Macintosh): double-clicking on the program icon.
• (Unix): assuming an appropriately-name Java executable is installed and in your

path, type "java main.GeneNet &" – depending on the version of Java you use, you
may need to include a flag to invoke the just-in-time compiler.

• (Windows): we don't use Windows so you'll have to figure this out yourself, but it
should be more or less the same as Unix.

Two windows should open; the lower one is a console window where the program prints
out status messages (see Figure 1). The other is the main control window, including
the main menus. Those of you used to Macintosh computers may be momentarily
confused to see the menus are inside the window, not in the menu bar. This is because

Ingeneue tutorial 1, page 2

Java programs are intended to run identically on all platforms. Note: if one or the other
windows fails to appear, kill the program and restart. For some reason the most recent
version of Apple's MRJ occasionally fails to display the windows on startup.

Until we develop a more sophisticated interface, Ingeneue uses text files as inputs.
This tutorial should have come along with a folder called Inputs, which contains files of
three types: ".net" files define genetic networks; ".params" files contain sets of
parameters for a particular network; ".iter" files contain instructions for automatically
running models within Ingeneue. Before loading a network, take a quick look at one of
the network files.

3) Using any text editor, open the file "spg1_basic.net" ("spg" = segment polarity genes).
Skim through this file to see the basic structure.

We'll come back to parts of this file later on in more detail. For now, just notice that
the top section defines all the different components of the model – mRNA's, proteins,
protein complexes and so on. These components are the "Nodes" of the network. Next
comes a section specifying how each Node changes over time. The items in this section
correspond to equations that will be summed into one overall differential equation per
Node. We call these equation fragments "Affectors". The last two major sections give
the values for each parameter in the model and the initial conditions.

4) Close the "spg1_basic.net" file.

5) Select 'Load' from the 'File' menu in Ingeneue, and load the "spg1_basic.net" file you were
just looking at.

In addition to the two windows that appeared at start-up, Ingeneue opens a new
window titled "Cell View". Cell View contains a column of pictures of the field of cells
that will be used in this model (rightmost window in Figure 1). Each picture is labeled
with one of the Nodes in the model, and will show the concentration of that Node in
each cell. Cell View only shows a subset of the Nodes, and you can choose which ones
in the input file or while the program is running (see below). To make things run fast
the model is just a two-segment strip of cells and only two cells high. The initial
conditions don't show up in the Cell View until you reset or run the model. Start by
resetting so you can see what the initial conditions look like.

Also, the main control window now contains a diagram of the network, showing which
Nodes influence each other directly. Clicking on each Node brings up a Node Inspector
window that allows you to specify whether that Node is shown in the Cell View or not,
and, when the model is running, the Node Inspector allows you to see the numerical
value of a Node in an individual cell.

6) To see the initial conditions, reset the model by selecting 'Reset' from the 'Run' menu.

7) Run the model by selecting 'Run' from the 'Run' menu.

Pretty boring, huh? Obviously the parameter values specified in the input file aren't
too conducive to stripe patterning. The next section shows you how to load a file with
sets of parameters (that we pre-selected) which cause the model to make stripes.

Ingeneue tutorial 1, page 3

1 34

2

5

Figure 1. The Ingeneue windows. The main control window (1) is in the middle, and displays a diagram of the
currently loaded network; the window title is the name of the network specified in the model file. The selected Node
is highlighted in yellow; green lines show which other Nodes affect the selected one, whereas red lines show which
other Nodes are affected by the selected Node. Circles in the middle of the connecting lines allow access to the
parameters governing the Affector representing that link. The Cell View (3) displays concentrations of gene products
(Nodes) in the entire cell grid. The Inspector window (4, currently displaying information about the selected Node),
to the left, shows the numerical value of an individual Node and allows one to set initial concentrations and whether
the Node is shown in the Cell View. Ingeneue uses the Java Console (2) to issue error messages or to announce other
information. Finally, the Parameters window (5), which titles itself according to the parameter file loaded, in this
case "spg.params", has controls for inspecting and applying parameter sets to the model.

Using pre-collected parameter sets

8) Select 'Load' from the 'File' menu and load the file "spg.params".

The program will probably show you some warning messages in the console window.
Ignore these unless they seem really dire; it should be telling you that these parameter
sets were found with a different input file than you presently have loaded, which in
this case is just fine. Ingeneue will then bring up a new Parameters window that
contains a plot that looks a little like an incompetent spider's web (bottom right
window in Figure 1). This plot shows you one or more parameter sets. Note: you will

Ingeneue tutorial 1, page 4

need to expand the window to see all the controls and to see the wheel plot clearly. Each
spoke of the wheel is the axis for a single parameter, with the lowest possible value
that parameter could take on at the inner circle and the highest value at the outer
circle. A parameter's value is plotted as a point on its spoke in between the inner and
outer circles. There are 48 parameters in this model so there are 48 spokes. A single
parameter set is then a polygon with a vertex on each spoke at the position of each
parameter's value in that set. Don't worry about reading the graph precisely; the point
is that the different polygons are vastly different from one another in shape, and thus
parameter sets are widely distributed in parameter space.

9) To get a feeling for how the parameter sets vary, scan through the parameter sets by using
the arrow buttons at the bottom of the Parameters window. Again, the point to
recognize is that, although as you will soon discover all these parameter sets confer
similar behavior on the model, they specify widely different values for each parameter.

10) Pick one of the parameter sets and load it into the model by clicking on the 'Load Cam'
button in the Parameters window.

11) Choose 'Run' from the 'Run' menu in either the Cell View or main control windows, to run
the model with this new set of parameters.

Much better, yes?

Note: Figure 1 shows what things should look like at this point; the pattern in the Cell
View window was made with the first parameter set in the "spg.params" file.

12) Repeat steps 10 and 11 for as many of the other parameter sets as you can. Notice how all
these parameter sets make qualitatively similar patterns with respect to engrailed (en),
wingless (wg), and hedgehog (hh). At the same time, notice how different the detailed
behavior of each parameter set is, especially during the initial period, despite all
making qualitatively the same pattern.

If you want to sit back and relax and watch the program test all the parameter sets in
turn, load the file "tester.iter" and choose 'Run Iterator' from the 'Run' menu.

So far you have seen a single instance of a parameter set that does not form segments
and several instances of parameter sets that do form segments. What else can the
model do? The next section explores that question by running the model with
randomly generated parameter sets.

Sampling random parameter sets

To run a model automatically in Ingeneue you use a software module called an Iterator.
An Iterator performs some predefined set of actions over and over again. One of the
simplest Iterators picks random sets of parameters for a model and runs it, usually
using a pattern recognition module to score the behavior of the model with each
parameter set. The framework we have for Iterators right now is a bit more complex
than it ought to be, and this tutorial won't try to explain them, just have you use a
simple one.

13) Select 'Load' from the 'File' menu and choose the file "randomsampler.iter".

14) Ingeneue may or may not like loading an iterator file after you've already been playing
around with parameters so long. If you see lots of messages about exceptions in the

Ingeneue tutorial 1, page 5

Console window, just quit the program, restart it, reload the "spg1_basic.net" file, and
then load "randomsampler.iter".

15) Select 'Run Iterator' from the 'Run' menu.

Ingeneue cycles through one randomly-picked parameter set after another, running
each 200 minutes. Here are several things to pay attention to:

• Some runs are slower than others, but all cover roughly 200 minutes (time is shown
in the upper left of the Cell View). The speed difference reflects differences in the
"stiffness" of the equations, which depends on the particular parameter values in
the current set. This speed difference in the simulation has absolutely nothing to
do with the speed at which the pattern could be formed in a real embryo, just with
how fast the computer can solve the equations.

• Lots of runs do boring things like turn all genes off or turn something on
everywhere. Many others look promising but then collapse. See if you can get a
feel for what tends to happen as the initial pattern collapses. Look at the network
diagram to see if you can intuit what's going on.

• There are many other stable patterns besides the segment polarity pattern that the
network can adopt, even though they all start from the same initial conditions. You
should see some of them going by, and every once in a while you may see the
model make the correct pattern.

Note: for the segment polarity model we impose repeating boundary conditions, meaning
that on each edge the cell grid wraps around so that, for instance, the cells on the east
edge are actually neighbors of the cells on the west edge. The file "spg1_basic.net"
specifies an 8x2 cell grid, which seems to be about right for a human to see clearly the
nature of the patterns the model makes. However, as long as we impose repeating
boundary conditions, and as long as the model is entirely deterministic (i.e. no random
noise afflicts the Nodes), a 4x1 cell grid is equivalent but four times faster, which of
course makes searches much more bearable for the human. For example, once you have a
feel for the variety of patterns the model makes, you might want to get a feel for how
frequent some of those patterns are. The file "spg1_4cell.net" uses a 4x1 grid, but is
otherwise exactly the same as "spg1_basic.net". Load "spg1_4cell.net", then
"randomsampler.iter" (you may have to restart the program if it emits a stream of error
messages), and then choose 'Run Iterator' again from the 'Run' menu.

16) When you are tired of watching this, select 'Stop' from the 'Run' menu. You may need to
quit, restart, and reload the model file again at some point below.

Until now you have been using either working parameter sets that we found, or random
sets. The next section shows you how to set parameter values yourself to get a better
feel for how each individual parameter might affect the behavior of the model.

Changing parameter values by hand

There are two different ways to change parameter values of an Ingeneue model. You
can change them in the input file. You can also change them through the Ingeneue
interface by clicking on the little circles in the network diagram displayed in the main
control window, which shows all the parameters governing that link in the Inspector
window. This is the incipient beginnings of our eventual full-blown point-and-click

Ingeneue tutorial 1, page 6

user interface to Ingeneue. You're welcome to click away on the network diagram (the
last section will ask you to do this for changing initial conditions) and figure out how
to change parameters that way (its about as straightforward as can be; see Figure 2).
However, we've written this exercise as if you're still using the old-fashioned method of
editing the text file, which has the advantage that you can go in and quickly edit lots
of values without all the clicking around to find the one you want.

17) Start with a parameter set that makes the right pattern by loading the network file
"spg1_01.net".

18) Run the model to see what pattern these parameters produce, taking note of the initial
transients, and how well it matches the target pattern.

19) Open "spg1_01.net" in a text editor and scroll to a section labeled "&ParameterValues".

You'll see a bunch of lines that look like this:

&K_WGen 0.1687772 0.0010 1.0 Logarithmic

The tag with the ampersand is the name of the parameter. The first number is the set
value of that parameter. This is the only number we'll work with in this tutorial. The
next two are the lower and upper bounds for that parameter. The "Logarithmic"
specifier means that this parameter is plotted on a log scale in the Parameters graph,
and that during random sampling it varies on a log scale.

20) To figure out what each of the model's 48 parameters does, peruse "SPGParameters.pdf"
(which should have come with this file). You will find brief descriptions of each of the
parameters in that document. The manual and other documents contain fuller
descriptions of the general classes of parameters used in Ingeneue models.

21) Think about what parameter you might want to change to achieve a particular effect on
the behavior of the model (or just pick randomly). Then replace the current value of
the parameter – the first number on the parameter definition line – with another value
between the minimum and maximum values. The minimum and maximum are merely
guidelines, and may be violated if you wish. For example, for parameters starting with
"K_", a value well above 1.0 (i.e. 10 or so) usually means that the regulatory
connection governed by that parameter is too weak to do anything.

22) Choose 'Save As' in your text editor and save the file under a new name, to avoid
overwriting the original.

23) Load this new file into Ingeneue and run it.

24) Repeat 21 - 23 a bunch of times until you are sick of the little colored hexagons. You can
also start with another initial parameter set by using one of the other "spg1_XX.net"
files. Depending on the parameter set you start with you may find it very hard to
change the behavior of the model, whereas with another starting set you may find it
very easy to nudge it into doing something quite different.

Changing initial conditions

The "initial conditions" for the model is the pre-pattern that the model starts running
from – the initial concentrations of every Node in every Cell. It is the pattern displayed
at time 0 in your runs above (or after resetting the model). As with changing
parameter values, there are two ways to change the initial conditions in an Ingeneue

Ingeneue tutorial 1, page 7

model. You can change them in the network file, or you can change them through the
interface. While changing through the network file is more powerful, in this case it is
easier to change them through the interface. In this section, you explore the effect of
simple changes to initial conditions.

Figure 2. Inspector window in Node (left) and Affector (right) modes.

25) Load a network file (one of "spg1_XX.net") that makes nice stripes.

26) In the Cell View window, double-click on one of the cells for a Node whose initial value
you want to change. For instance, if you want to change the initial concentration of
engrailed mRNA in the top-left cell, double-click on the top left cell in the row labeled
"en".

Note: to correspond with the numbering of arrays in Java and similar programming
languages, the first (that is, top left) Cell in the cell grid displayed in Cell View is
numbered 0.

27) In the Inspector window which appears, there is a number called Init Value.
Concentrations for most Nodes are scaled between 0 and 1, so change the Init Value to
any number you want between 0 and 1.

28) Click on the 'Set' button in the Inspector window.

29) Reset the model. You should see the pre-pattern reflecting the change you just made.

30) Run the model.

31) If you want to change the initial value for a Node that is not shown in the Cell View, click
on the Node in the network diagram and then click once (only once) on the cell where
you want to change its value in any of the rows in the Cell View. You will now get the
appropriate Inspector and can change the initial value as above. Or, click on the Node
in the network diagram, then check the box to show the Node in the Cell View, and
then double-click the appropriate cell in the new row.

32) Play around with different initial conditions. Start with one of the "spg1_XX.net" files,
and then modify the initial conditions to explore what effect they have. How far can
you get from the crisp initial condition that we used and still get good segments?
What other patterns can you get with different initial conditions? You might want to
modify the initial conditions in "spg1_4cell.net", then use the "randomsampler.iter" to
conduct a random search.

A test of sensitivity to random noise

Next you'll test how sensitive the model is to random variations in the initial
concentrations of engrailed and wingless. Of course, the model needs parameters, so

Ingeneue tutorial 1, page 8

we use the ones collected in "spg.params"; thus you'll really be testing the sensitivity
of the model with each of those parameter sets.

33) Load the file "spg1_sloppystripe.net". Choose 'Reset' from the 'Run' menu. You should see
a 4x3 grid of cells with engrailed and wingless stripes, but with random fluctuations in
the level of each of them in each cell.

34) Load the same file again, choose 'Reset', and note that it now exhibits a different random
variation in the initial prepattern.

The program is set up so that the initial prepattern is randomized slightly each time the
model is loaded, not each reset. This means that you can test a battery of parameter
sets against the same noisy variant.

35) To do that, load the file "spg.params". Flip through the parameter sets, press 'Load Cam',
and run the model. Depending on the initial prepattern, you should see that some sets
allow the model to "correct" the initial sloppiness, but others fail in various ways.

36) To get a new sloppy pattern, re-load "spg1_sloppystripe.net"; you should not need to
reload the battery of parameter sets. Flip through them again, applying each one, and
running the model. Repeat for several re-loads of "spg1_sloppystripe.net".

37) You can use the file "tester.iter" to run through all the parameter sets in "spg.params".
Load "spg1_sloppystripe.net", then load "spg.params", then load "tester.iter", and
choose 'Run Iterator' from the 'Run' menu. To get a new sloppy pattern, reload
"spg1_sloppystripe.net", and re-run the Iterator. Note: Ingeneue may not tolerate this
sort of thing; if it doesn't, quit, restart, and follow the entire sequence.

The Iterator specified in "tester.iter" will run the model with each parameter set for
1000 min, and assign it a score based on whether it makes decent stripes of engrailed,
wingless and hedgehog. If you are really diligent and repeat this step several times,
you can follow the output in the console window to keep track of which parameter sets
tolerate which insults. You will find that some parameter sets are consistently able to
correct against random variation in the initial pattern, but that some are more fragile
to this kind of perturbation.

This exercise uses a bit of a cumbersome way to test this sort of thing, but it does it
using very simple tools. Ingeneue includes some more powerful facilities for doing this
sort of thing, but more important, the design of the program makes it easy to add
iterator objects that conduct very sophisticated tests that involve running the
simulation over and over again while varying parameters or initial conditions.

That's the end of this tutorial. The next tutorial takes you through building a very simple
model with Ingeneue. After that, you can look in the manual for more details. If you are a
programmer, there is also a fair bit of documentation contained within the source code,
including descriptions of each of the Affectors (pieces of equations). And of course, you can
always email one of us. Enjoy.

